DOI QR코드

DOI QR Code

In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures

Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조

  • Ha, Jung-Soo (School of Materials Science and Engineering, Andong National University) ;
  • Han, Yoo-Jeong (School of Materials Science and Engineering, Andong National University)
  • 하정수 (안동대학교 신소재공학부) ;
  • 한유정 (안동대학교 신소재공학부)
  • Received : 2018.12.17
  • Accepted : 2019.02.11
  • Published : 2019.02.27

Abstract

A powder mixture of 70 wt% $Al_2O_3$ and 30 wt% hydroxyapatite (HA) is sintered at $1300^{\circ}C$ or $1350^{\circ}C$ for 2 h at normal pressure. An $MgF_2$-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without $MgF_2$ show ${\alpha}$ & ${\beta}$-tricalcium phosphates (TCPs) and $Al_2O_3$ phases with no HA at either of the sintering temperatures. In the case of $1,350^{\circ}C$, a $CaAl_4O_7$ phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and $1,350^{\circ}C$, respectively. Because the decomposition of HA produces a $H_2O$ vapor, fewer large pores of $5-6{\mu}m$ form at $1,300^{\circ}C$. The $MgF_2$-added samples show FA and $Al_2O_3$ phases with no TCP. Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and $1,350^{\circ}C$, respectively. No large pores are observed, and the grain size of FA ($1-2{\mu}m$) is bigger than that of TCP ($0.7{\mu}m{\geq}$) in the samples without $MgF_2$. The resulting $TCP/Al_2O_3$ and $FA/Al_2O_3$ composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.

Keywords

References

  1. S. Gautier, E. Champion and D. B. Assollant, J. Eur. Ceram. Soc., 17, 1361 (1997). https://doi.org/10.1016/S0955-2219(97)89403-4
  2. H. W. Kim, Y. H. Koh, S. B. Seo and H. E. Kim, Mater. Sci. Eng. C, 23, 515 (2003). https://doi.org/10.1016/S0928-4931(02)00355-7
  3. B. Viswanath and N. Ravishankar, Scr. Mater., 55, 863 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.049
  4. Z. Evis and R. H. Doremus, Mater. Res. Bull., 43, 2643 (2008). https://doi.org/10.1016/j.materresbull.2007.10.032
  5. Z. Xihua, L. Changxia, L. Musen, B. Yunqiang and S. Junlong, Ceram. Int., 35, 1969 (2009). https://doi.org/10.1016/j.ceramint.2008.10.027
  6. S. J. Kim, H. G. Bang, J. H. Song and S. Y. Park, Ceram. Int., 35, 1647 (2009). https://doi.org/10.1016/j.ceramint.2008.07.016
  7. M. Aminzare, A. Eskandari, M. H. Baroonian, A. Berenov, Z. Razavi Hesabi, M. Taheri and S. K. Sadrnezhaad, Ceram. Int., 39, 2197 (2013). https://doi.org/10.1016/j.ceramint.2012.09.023
  8. V. V. Silva, F. S. Lamerias and R. Z. Dominguez, Compos. Sci. Tech., 61, 301 (2001). https://doi.org/10.1016/S0266-3538(00)00222-0
  9. R. R. Rao and T. S. Kannan, Mater. Sci. Eng. C, 20, 187 (2002). https://doi.org/10.1016/S0928-4931(02)00031-0
  10. Z. Evis, M. Usta and I. Kutbay, Mater. Chem. Phys., 110, 68 (2008). https://doi.org/10.1016/j.matchemphys.2008.01.009
  11. S. Nath, K. Biswas, K. Wang, R. K. Bordia and B. Basu, J. Am. Ceram. Soc., 93, 1639 (2010).
  12. J. Li, B. Fartash and L. Hermansson, Biomaterials, 16, 417 (1995). https://doi.org/10.1016/0142-9612(95)98860-G
  13. E. Adolfsson, P. Alberius-Henning and L. Hermansson, J. Am. Ceram. Soc., 83, 2798 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01634.x
  14. Z. Shen, E. Adolfsson, M. Nygren, L. Gao, H. Kawaoka and K. Niihara, Adv. Mater., 13, 214 (2001). https://doi.org/10.1002/1521-4095(200102)13:3<214::AID-ADMA214>3.0.CO;2-5
  15. Y. M. Kong, C. J. Bae, S. H. Lee, H. W. Kim and H. E. Kim, Biomaterials, 26, 509 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.061
  16. V. K. Singh and B. R. Reddy, Ceram. Int., 38, 5333 (2012). https://doi.org/10.1016/j.ceramint.2012.03.039
  17. J. S. Ha, J. Korean Ceram. Soc., 52, 374 (2015). https://doi.org/10.4191/kcers.2015.52.5.374
  18. E. Adolfsson, M. Nygren and L. Hermansson, J. Am. Ceram. Soc., 82, 2909 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02176.x
  19. C. J. Tredwin, A. M. Young, E. A. Abou Neel, G. Georgiou and J. C. Knowles, J. Mater. Sci.: Mater. Med., 25, 47 (2014). https://doi.org/10.1007/s10856-013-5050-y
  20. N. Bouslama, F. B. Ayed and J. Bouaziz, Ceram. Int., 35, 1909 (2009). https://doi.org/10.1016/j.ceramint.2008.10.030
  21. D. Weber and A. Bischoff, Eur. J. Mineral., 6, 591 (1994). https://doi.org/10.1127/ejm/6/4/0591
  22. F. B. Ayeda, J. Bouaziza and K. Bouzouitab, J. Eur. Ceram. Soc., 20, 1069 (2000). https://doi.org/10.1016/S0955-2219(99)00272-1
  23. Y. X. Pang, X. Bao, and L. Weng, J. Mater. Sci., 39, 6311 (2004). https://doi.org/10.1023/B:JMSC.0000043601.46284.a0