DOI QR코드

DOI QR Code

Effects of Physical and Chemical Treatments for Reduction of Staphylococcal Phages

황색포도상구균 박테리오파지의 저감화를 위한 물리화학적 처리 효과

  • Baek, Da-Yun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University) ;
  • Cho, Sung-Rae (Patissier Mijin Food) ;
  • Lee, Young-Duck (Department of Food Science and Engineering, Seowon University)
  • 백다윤 (가천대학교 식품생물공학과) ;
  • 박종현 (가천대학교 식품생물공학과) ;
  • 조성래 ((주)파티쉐미진푸드) ;
  • 이영덕 (서원대학교 식품공학과)
  • Received : 2019.01.30
  • Accepted : 2019.02.13
  • Published : 2019.02.28

Abstract

The effect of physical and chemical treatments to reduce staphylococcal phages was investigated. To determine impact of physical treatment on viability of phages, two staphylococcal phages (SAP84 and SAP89) were treated with multiple heat ($55^{\circ}C$ and $60^{\circ}C$) and pH (pH4, 7, 10) conditions. Viability of SAP 84 was dramatically reduced at 60C and SAP 89 was completely inactivated at 60C within 25 min. Overall, the two phages were stable under all the pH conditions tested except for the SAP 89 at pH 10. Treatments, a 10% FAS (Ferrous Ammonium Sulfate) solution and various density of ethanol and sodium hypochlorite were used to reduce the two phages. SAP 84 was unstable in 50% and 70% ethanol. However, SAP 84 and SAP 89 showed high tolerance after exposure to 100 ppm of sodium hypochlorite which is known as an effective sterilizer. As soon as the two phages were treated with 10% FAS, which is used as a virucidal agent, they were inactivated and did not form any plaque. The result of this study provides additional evidence that staphylococcal phages can be controlled by various physicochemical treatments.

본 연구는 황색포도상구균 박테리오파지를 물리화학적 방법을 통해서 제어하기 위해 황색포도상구균을 대상으로 하는 SAP 84 와 SAP 89를 신규 분리하였다. 그리고, 황색포도상구균 박테리오파지에 대해 물리적 방법으로 $55^{\circ}C$$60^{\circ}C$ 열처리와 pH 4, pH 7, pH 10 처리하였다. 그 결과 SAP 84는 $60^{\circ}C$에서 급격히 감소하였고 SAP 89는 $60^{\circ}C$에서 25 분 만에 모두 활성을 잃었다. SAP 84는 pH 4 ~ 10에서 매우 안정적이었고 SAP 89는 pH 10 이상에서 비교적 불안정해지는 것을 보였다. 화학적 방법으로는 에탄올과 차아염소산나트륨 및 FAS 처리를 하였다. SAP 84가 50%, 70% 에탄올에서 급격히 감소하였다. 살균력이 좋은 100 ppm의 차아염소산 나트륨에서도 SAP 84와 SAP 89는 상당히 안정적인 상태를 유지하고 있다. Virucidal agent로 사용되는 FAS를 10% 농도로 처리하였을 때 SAP 84와 SAP 89 모두 처리 직후부터 제거되는 것을 확인할 수 있었다. 따라서 본 연구를 통해 SAP 84와 SAP 89 모두 화학적 처리 방법인 FAS 처리를 통해서 제어 가능함을 보여주었다. 이외에도 SAP 84는 물리적 방법인 열처리의 저감화 효과가 좋았으며 SAP 89는 화학적 방법인 에탄올 처리의 저감화 효과가 비교적 좋았다. 이렇듯 물리화학적 처리방법으로 황색포도상구균 박테리오파지를 제어 가능할 것으로 사료된다.

Keywords

References

  1. Hennekinne, J.A., De Buyser, M.L., Dragacci, S.: Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev., 36, 815-836 (2012). https://doi.org/10.1111/j.1574-6976.2011.00311.x
  2. McGuinness, W.A., Malachowa, N., DeLeo, F.R.: Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med., 90, 269-281 (2017)
  3. Franklin, D.L.: Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin Invest. 111, 1265-1273 (2003) https://doi.org/10.1172/JCI18535
  4. Appelbaum, P.C.: The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin. Microbiol. Infect., 12, 16-23 (2006). https://doi.org/10.1111/j.1469-0691.2006.01344.x
  5. Wielders, C.L.C.: Evidence for in-vivo transfer of mecA DNA between strains of Staphylococcus aureus. Lancet., 357, 1674-1675 (2001). https://doi.org/10.1016/S0140-6736(00)04832-7
  6. Kazmierczak, Z., Gorski, A., Dabrowska, K.: Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses, 6, 2551-2570 (2014). https://doi.org/10.3390/v6072551
  7. Sulakvelidze, A., Alavidize, Z., Morris, J.G.: JR. Bacteriophage therapy. Antimicrob. Agents Chemother., 45, 649-659 (2001). https://doi.org/10.1128/AAC.45.3.649-659.2001
  8. Sillankorva, S.M., Oliveira, H., Azeredo, J.: Bacteriophages and their role in food safety. Int. J. Microbiol., 2012, (2012).
  9. Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., Imai, S.: Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chemother., 11, 211-219 (2005). https://doi.org/10.1007/s10156-005-0408-9
  10. Liu, H., Niu, Y.D., Li, J., Stanford, K., McAllister, T.A.: Rapid and accurate detection of bacteriophage activity against Escherichia coli O157:H7 by propidium monoazide real-time PCR. Biomed Res. Int., 2014 (2014).
  11. Liu, H., Meng, R., Wang, J., Niu, Y.D., Li, J., Stanford, K., McAllister, T.A.: Inactivation of Escherichia coli O157 bacteriophages by using a mixture of ferrous sulfate and tea extract. J. Food Prot., 78, 2220-2226 (2015). https://doi.org/10.4315/0362-028X.JFP-15-239
  12. Chibeu, A., Agius, L., Gao, A., Sabour, P.M., Kropinski, A.M., Balamurugan, S.: Efficacy of bacteriophage $LISTEX^{TM}$ P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int. J. Food Microbiol., 167, 208-214 (2013). https://doi.org/10.1016/j.ijfoodmicro.2013.08.018
  13. Muller-Merbach, M., Rauscher, T., Hinrichs, J.: Inactivation of bacteriophages by thermal and high-pressure treatment. Int. Dairy J., 15, 777-784 (2005). https://doi.org/10.1016/j.idairyj.2004.08.019
  14. Jonczyk, E., Klak, M., Miedzybrodzki, R., Gorski, A.: The influence of external factors on bacteriophages-review. Folia Microbiol. (Praha)., 56, 191-200 (2011). https://doi.org/10.1007/s12223-011-0039-8
  15. Campagna, C., Villion, M., Labrie, S. J., Duchaine, C., Moineau, S.: Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants. Int. J. Food Microbiol., 171, 41-47 (2014). https://doi.org/10.1016/j.ijfoodmicro.2013.11.012
  16. Branston, S.D., Stanley, E.C., Ward, J.M., Keshavarz-Moore, E.: Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnol. Bioprocess Eng., 18, 560-566 (2013). https://doi.org/10.1007/s12257-012-0776-9
  17. Lee, Y.D., Chun, H., Park, J.H.: Characteristics and growth inhibition of isolated bacteriophages for Enterococcus faecalis. Food Sci. Biotechnol., 23, 1357-1361 (2014). https://doi.org/10.1007/s10068-014-0186-1
  18. Lee, Y.D. Park, J.H.: Isolation and characterization of temperate phages in Enterococcus faecium from sprouts. Korean J. Food Sci. Technol., 46, 323-327 (2014). https://doi.org/10.9721/KJFST.2014.46.3.323
  19. Kim, E.J., Chang, H.J., Kwak, S., Park, J.H.: Virulence factors and stability of coliphages specific to Escherichia coli O157:H7 and to Various E. coli infection. J. Microbiol. Biotechnol., 26, 2060-2065 (2016) https://doi.org/10.4014/jmb.1609.09039
  20. Park D.S.: Characterization of shiga toxin encoding bacteriophage and expression of non-STEC transferred shiga toxin gen. MS thesis, Gachon University, Sungnam, Korea (2018).
  21. Ackermann, H.W.: Frequency of morphological phage descriptions in the year 2000, Brief Review. Arch. Virol., 146, 843-857 (2000). https://doi.org/10.1007/s007050170120
  22. Deghorain, M., Van Melderen, L.: The staphylococci phages family: An overview. Viruses, 4, 3316-3335 (2012). https://doi.org/10.3390/v4123316
  23. Zhang, Q., Xing, S., Sun, Q., Pei, G., Cheng, S., Liu, Y., An, X., Zhang, X., Qu, Y., Tong, Y.: Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China. Virus Genes, 53, 464-476 (2017). https://doi.org/10.1007/s11262-017-1445-z
  24. Zhang, L., Bao, H., Wei, C., Zhang, H., Zhou, Y., Wang, R.: Characterization and partial genomic analysis of a lytic Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis in Mid-east of China. Virus Genes, 50, 111-117 (2015). https://doi.org/10.1007/s11262-014-1130-4
  25. Litt, P. K. & Jaroni, D.: Isolation and physiomorphological characterization of Escherichia coli O157:H7-infecting bacteriophages recovered from beef cattle operations. Int. J. Microbiol., 2017, (2017).
  26. Cui, Z., Feng, T., Gu, F., Li, Q., Dong, K., Zhang, Y., Zhu, Y., Han, L., Qin, J., Guo, X.: Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China. Virol. J., 14, 1-8 (2017). https://doi.org/10.1186/s12985-016-0669-1
  27. Li, L., Zhang, Z.: Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep., 41, 5829-5838 (2014). https://doi.org/10.1007/s11033-014-3457-2
  28. Horikoshi, K., Yonezawa, Y.A.: Bacteriophage active on an alkalophilic Bacillus sp. J. Gen. Virol., 39, 183-185 (1978). https://doi.org/10.1099/0022-1317-39-1-183
  29. Sasikala, D. Srinivasan, P.: Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb. Pathog., 101, 24-35 (2016). https://doi.org/10.1016/j.micpath.2016.10.017
  30. Quiberoni, A., Guglielmotti, D.M., Reinheimer, J.A.: Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides. Int. J. Food Microbiol., 84, 51-62 (2003). https://doi.org/10.1016/S0168-1605(02)00394-X
  31. Ebrecht, A.C., Guglielmotti, D.M., Tremmel, G., Reinheimer, J.A., Suarez, V.B.: Temperate and virulent Lactobacillus delbrueckii bacteriophages: Comparison of their thermal and chemical resistance. Food Microbiol., 27, 515-520 (2010). https://doi.org/10.1016/j.fm.2009.12.012
  32. Suarez, V.B., Reinheimer, J.A.: Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages. J. Food Prot., 65, 1756-1759 (2002). https://doi.org/10.4315/0362-028X-65.11.1756
  33. Quiberoni, A., Suarez, V.B., Reinheimer, J.A.: Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments. J. Food Prot., 62, 894-898 (1999). https://doi.org/10.4315/0362-028X-62.8.894
  34. Capra, M.L., Quiberoni, A., Reinheimer, J.A.: Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett. Appl. Microbiol., 38, 499-504 (2004). https://doi.org/10.1111/j.1472-765X.2004.01525.x
  35. BINETTI, A.G., REINHEIMER, J.A.: Thermal and Chemical Inactivation of Indigenous Streptococcus thermophilus Bacteriophages Isolated from Argentinian Dairy Plants. J. Food Prot., 63, 509-515 (2000). https://doi.org/10.4315/0362-028X-63.4.509
  36. Park, W.J.: Reduce of Bacillus cereus in sprouts by using bacteriophage. MS thesis, Kyungwon University, Sungnam, Korea (2012).
  37. Sanekata, T., Fukuda, T., Miura, T., Morino, H., Lee, C., Maeda, K., Araki, K., Otake, T., Kawahata, T., Shibata, T.: Evalutaion of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza vorus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol of Science., 15, 45-49 (2010) https://doi.org/10.4265/bio.15.45
  38. Briggiler Marco, M., De Antoni, G.L., Reinheimer, J.A., Quiberoni, A.: Thermal, chemical, and photocatalytic inactivation of Lactobacillus plantarum bacteriophages. J. Food Prot., 72, 1012-1019 (2009). https://doi.org/10.4315/0362-028X-72.5.1012
  39. Pujato, S.A., Guglielmotti, D.M., Ackermann, H.W., Patrignani, F., Lanciotti, R., Reinheimer, J.A., Quiberoni, A.: Leuconostoc bacteriophages from blue cheese manufacture: Long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application. Int. J. Food Microbiol., 177, 81-88 (2014). https://doi.org/10.1016/j.ijfoodmicro.2014.02.012
  40. Lim G.Y, Park W.J, Lee Y.D, Park J.H.: Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli. Food Sci. Technol., 50, 594-600 (2018).
  41. Oliveira, I. C., Almeida, R. C. C., Hofer, E., Almeida, P. F.: Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment. Brazilian J. Microbiol., 43, 1128-1136. (2012). https://doi.org/10.1590/S1517-83822012000300040
  42. McNerney, R., Wilson, S.M., Sidhu, A.M., Harley, V.S., al Suwaidi, Z., Nye, P.M., Parish, T., Stoker, N.G.: Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res. Microbiol., 149, 487-495 (1998). https://doi.org/10.1016/S0923-2508(98)80003-X
  43. Stewart, G.S., Jassim, S.A., Denyer, S.P., Newby, P., Linley, K., Dhir, VK.: The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J. Appl. Microbiol., 84, 777-783 (1998). https://doi.org/10.1046/j.1365-2672.1998.00408.x