DOI QR코드

DOI QR Code

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin (Department of Food Science and Technology, Oregon State University) ;
  • Lee, Sang In (Department of Food Science and Technology, Oregon State University) ;
  • Rackerby, Bryna (Department of Microbiology, Oregon State University) ;
  • Moppert, Ian (Department of Food Science and Technology, Oregon State University) ;
  • McGorrin, Robert (Department of Food Science and Technology, Oregon State University) ;
  • Ha, Sang-Do (Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University) ;
  • Park, Si Hong (Department of Food Science and Technology, Oregon State University)
  • 투고 : 2018.12.29
  • 심사 : 2019.02.14
  • 발행 : 2019.02.28

초록

신선한 농산물 섭취와 관련된 많은 장점들이 전세계적으로 발표되고 있으며, 지속적인 섭취를 장려하고 있다. 일반적으로 과일과 채소는 최소한으로 가공되기 때문에 천연의 성분들이 건강을 증진시키는 역할을 하기도 하지만 그만큼 질병을 일으킬 수 있는 매개체가 존재할 수 있는 가능성이 매우 높다. 세계 보건기구 (WHO)의 보고서에 따르면 10명 중 1명이 식품에 의해 발생하는 질병으로 고통 받고 있으며, 전 세계적으로 매년 42만 명이 식중독으로 사망하는 것으로 밝혀졌다. 이러한 신선 식품은 농장에서 수확할 때부터 소비자의 식탁에 오르기까지 다양한 경로에서 쉽게 오염 될 수 있다. 본 리뷰논문에서는 신선식품에 의해 발생할 수 있는 질병을 이해하기 위해 화학적, 생물학적, 그리고 물리학적 위험요소로부터 식중독을 일으키는 원인과, 증상, 그리고 검출 방법에 대해서 기술 하였다. 화학적 위험요소의 대표적인 예로는 농약(살충제, 살균제, 및 제초제), 천연 독소 (곰팡이 독소 및 식물 독소), 그리고 중금속 (수은 및 카드뮴) 등이 있으며 이는 크로마토그래피 및 나노 기술 등을 이용하여 검출 할 수 있다. 하지만, 여러 실험에도 불구하고 화학적 위험 요소는 그 구조가 다양하기 때문에 위험 요소를 검출하는 하나의 표준 방법을 수립하기 힘들다. 신선한 과일과 채소는 영양분과 수분이 풍부하기 때문에 박테리아성 병원균 (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, Bacillus cereus), 바이러스 또는 기생충에 의해 쉽게 오염이 되며, 이를 검출하기 위해 주로 다양한 분자 생물학적 기술이 사용되고 있다. 마지막으로 물리적 위험요소인 유리, 금속, 자갈 등과 같은 매개체는 가공 공정 중에 식품에 유입되어 소비자에게 신체적 상해를 줄 수 있다. 이러한 위험요소를 줄이기 위해서 X-선 검사와 같은 투시 시스템을 이용하여 위해물질을 탐지하거나, 생산에 관여하는 직원 교육을 통해 2차 감염을 줄일수 가 있다.

The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

키워드

참고문헌

  1. US Food and Drug Administration.: Foodborne illness-causing organisms in the US: what you need to know. The U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition, 888 (2009).
  2. World Health Organization.: Food safety: fact sheet no. 399. World Health Organization, Geneva; https://www.who.int/en/news-room/fact-sheets/detail/food-safety Accessed Oct. 4th, (2018).
  3. Westrell T., Ciampa N., Boelaert F., Helwigh B., Korsgaard H., Chriel M., Ammon A., and Makela P.: Zoonotic infections in Europe in 2007: a summary of the EFSA-ECDC annual report. Eurosurveillance., 14, 19100 (2009).
  4. Beuchat L.R.: Pathogenic microorganisms associated with fresh produce. J. Food Prot., 59, 204-216 (1996). https://doi.org/10.4315/0362-028X-59.2.204
  5. Alegbeleye O.O., Singleton I., and Sant'Ana A.S.: Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol., 73, 177-208 (2018). https://doi.org/10.1016/j.fm.2018.01.003
  6. Pollack, S.L.: Consumer demand for fruit and vegetables: the US example. Changing structure of global food consumption and trade., U.S. Department of Agriculture, Economic Service, 6, 49-54 (2001).
  7. Warriner K., Huber A., Namvar A., Fan W., and Dunfield K.: Recent advances in the microbial safety of fresh fruits and vegetables. Adv. Food Nutr. Res., 57, 155-208 (2009). https://doi.org/10.1016/S1043-4526(09)57004-0
  8. Callejon R.M., Rodriguez-Naranjo M.I., Ubeda C., Hornedo-Ortega R., Garcia-Parrilla M.C., and Troncoso A.M.: Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne. Pathog. Dis., 12, 32-38 (2015). https://doi.org/10.1089/fpd.2014.1821
  9. CDC (Centers for Disease Control and Prevention)(2018).: National outbreak reporting system; https://wwwn.cdc.gov/NorsDashBoard/Default.aspx. Accessed Oct. 4th, (2018).
  10. Faille C., Cunault C., Dubois T., and Benzech T.: Hygieenic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innov. Food Sci. Emerg. Technol., 46, 65-73 (2017). https://doi.org/10.1016/j.ifset.2017.10.002
  11. Marriott N.G., Schilling M.W., and Gravani, R.B.: Food contamination sources. Principles of Food Sanitation, Springer, New York, pp. 83-91 (2018).
  12. Mastovska, K.: Modern analysis of chemical contaminants in food. Food Safety Magazine.; https://www.foodsafety-magazine.com/magazine-archive1/februarymarch-2013/modern-analysis-of-chemical-contaminants-in-food/ Accessed Oct. 4th, (2018).
  13. Jackson L.S.: Chemical food safety issues in the United States: past, present, and future. J. Agric. Food Chem., 57, 8161-8170 (2009). https://doi.org/10.1021/jf900628u
  14. Rather I.A., Koh W.Y., Paek W.K., and Lim J.: The sources of chemical contaminants in food and their health implications. Front. Pharmacol., 8, 830 (2017). https://doi.org/10.3389/fphar.2017.00830
  15. Song Q., Zheng Y.-J., Xue Y., Sheng W.G., and Zhao M.R.: An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination. Neurocomputing., 226, 16-22 (2017). https://doi.org/10.1016/j.neucom.2016.11.018
  16. Tirima S., Bartrem C., von Lindern I., von Braun M., Lind D., Anka S.M., and Abdullahi A.: Food contamination as a pathway for lead exposure in children during the 2010-2013 lead poisoning epidemic in Zamfara, Nigeria. J. Environ. Sci., 67, 260-272 (2018). https://doi.org/10.1016/j.jes.2017.09.007
  17. Dewey-Mattia D., Manikonda K., Hall A.J., Wise M.E., and Crowe S.J.: Surveillance for foodborne disease outbreaks-United States, 2009-2015. MMWR. Surveill. Summ., 67, 1 (2018).
  18. Jin B., Xie L., Guo Y., and Pang G.: Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int., 46, 399-409 (2012). https://doi.org/10.1016/j.foodres.2011.12.003
  19. Kher S.V., De Jonge J., Wentholt M.T., Deliza R., de Andrade J.C., Cnossen H.J., Luijckx N.B.L., and Frewer L.J.: Consumer perceptions of risks of chemical and microbiological contaminants associated with food chains: a cross-national study. Int. J. Consum. Stud., 37, 73-83 (2013). https://doi.org/10.1111/j.1470-6431.2011.01054.x
  20. Aga D. and Thurman E.: Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil. Environ. Sci. Technol. Lett., 35, 2455-2460 (2001). https://doi.org/10.1021/es991264s
  21. Blasco C., Font G., Manes J., and Pico Y.: Solid-phase microextraction liquid chromatography/tandem mass spectrometry to determine postharvest fungicides in fruits. Anal. Chem., 75, 3606-3615 (2003). https://doi.org/10.1021/ac0341362
  22. Blasco, C., Pico Y., and Font G.: Monitoring of five postharvest fungicides in fruit and vegetables by matrix solid-phase dispersion and liquid chromatography/mass spectrometry. J. AOAC. Int., 85, 704-711 (2002). https://doi.org/10.1093/jaoac/85.3.704
  23. Food Quality Protection Act.: Public Law 104-170. US Code of Federal Regulations; https://www.govinfo.gov/app/details/PLAW-104publ170 Accessed Oct. 4th, (2018).
  24. Tadeo J., Sanchez-Brunete C., Perez R., and Fernandez M.: Analysis of herbicide residues in cereals, fruits and vegetables. J. Chromatogr. A., 882, 175-191 (2000). https://doi.org/10.1016/S0021-9673(00)00103-5
  25. van Egmond H.P.: Natural toxins: risks, regulations and the analytical situation in Europe. Anal. Bioanal. Chem., 378, 1152-1160 (2004). https://doi.org/10.1007/s00216-003-2373-4
  26. Murphy P.A., Hendrich S., Landgren C., and Bryant C.M.: Food mycotoxins: an update. J. Food Sci., 71, R51-R65 (2006). https://doi.org/10.1111/j.1750-3841.2006.00052.x
  27. Yeni F., Yavas S., Alpas H., and Soyer Y.: Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Crit. Rev. Food Sci. Nutr., 56, 1532-1544 (2016). https://doi.org/10.1080/10408398.2013.777021
  28. van Egmond H.P., Schothorst R.C., and Jonker M.A.: Regulations relating to mycotoxins in food. Anal. Bioanal. Chem., 389, 147-157 (2007). https://doi.org/10.1007/s00216-007-1317-9
  29. Forsythe S.J.: The microbiology of safe food. Wiley, John Wiley & Sons, New York, pp. 26-29 (2011).
  30. Drusch S., and Ragab W.: Mycotoxins in fruits, fruit juices, and dried fruits. J. Food Prot., 66, 1514-1527 (2003). https://doi.org/10.4315/0362-028X-66.8.1514
  31. Novak W.K. and Haslberger A.G.: Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food Chem. Toxicol., 38, 473-483 (2000). https://doi.org/10.1016/S0278-6915(00)00040-5
  32. Wiedenfeld H. and Edgar J.: Toxicity of pyrrolizidine alkaloids to humans and ruminants. Phytochem. Rev., 10, 137-151 (2011). https://doi.org/10.1007/s11101-010-9174-0
  33. Hartmann T.: From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry., 68, 2831-2846 (2007). https://doi.org/10.1016/j.phytochem.2007.09.017
  34. Aragay G., Pons J., and Merkoci A.: Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev., 111, 3433-3458 (2011). https://doi.org/10.1021/cr100383r
  35. Han W.-Y., Zhao F.-J., Shi Y.-Z., Ma L.-F., and Ruan J.-Y.: Scale and causes of lead contamination in Chinese tea. Environ. Pollut., 139, 125-132 (2006). https://doi.org/10.1016/j.envpol.2005.04.025
  36. Valko, M., Morris H., and Cronin M.: Metals, toxicity and oxidative stress. Curr. Med. Chem., 12, 1161-1208 (2005). https://doi.org/10.2174/0929867053764635
  37. Flora S.J.: Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev., 2, 191-206 (2009). https://doi.org/10.4161/oxim.2.4.9112
  38. Turner N.W., Subrahmanyam S., and Piletsky S.A.: Analytical methods for determination of mycotoxins: a review. Anal. Chim. Acta., 632, 168-180 (2009). https://doi.org/10.1016/j.aca.2008.11.010
  39. LeDoux M.: Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. J. Chromatogr. A., 1218, 1021-1036 (2011). https://doi.org/10.1016/j.chroma.2010.12.097
  40. Tena M., Rios A., Valcarcel M., and Sanchez-Alarcon M.: Supercritical fluid extraction of organophosphorus pesticides from organge samples: Effect of solid additives on recovery. Chromatographia., 46, 524-528 (1997). https://doi.org/10.1007/BF02496371
  41. Al-Alam J., Bom L., Chbani A., Fajloun Z., and Millet M.: Analysis of dithiocarbamate fungicides in vegetable matrices using HPLC-UV followed by atomic absorption spectrometry. J. Chromatogr. Sci., 55, 429-435 (2017).
  42. Konasova R., Dytrtova J.J., and Kasicka V.: Determination of acid dissociation constants of triazole fungicides by pressure assisted capillary electrophoresis. J. Chromatogr. A., 1408, 243-249 (2015). https://doi.org/10.1016/j.chroma.2015.07.005
  43. Tadeo J., Sanchez-Brunete C., Garcia-Valcarcel A., Martinez L., and Perez R.: Determination of cereal herbicide residues in environmental samples by gas chromatography. J. Chromatogr. A., 754, 347-365 (1996). https://doi.org/10.1016/S0021-9673(96)00279-8
  44. Zheng M.Z., Richard J.L., and Binder J.: A review of rapid methods for the analysis of mycotoxins. Mycopathologia., 161, 261-273 (2006). https://doi.org/10.1007/s11046-006-0215-6
  45. Verpoorte R. and Niessen W.: Liquid chromatography coupled with mass spectrometry in the analysis of alkaloids. Phytochem. Anal., 5, 217-232 (1994). https://doi.org/10.1002/pca.2800050502
  46. Holstege D.M., Puschner B., and Le T.: Determination of grayanotoxins in biological samples by LC-MS/MS. J. Agr. Food. Chem., 49, 1648-1651 (2001). https://doi.org/10.1021/jf000750s
  47. Li S.-L., Song J.-Z., Qiao C.-F., Zhou Y., and Xu H.-X.: UPLC-PDA-TOFMS based chemical profiling approach to rapidly evaluate chemical consistency between traditional and dispensing granule decoctions of traditional medicine combinatorial formulae. J. Pharm. Biomed. Anal., 52, 468-478 (2010). https://doi.org/10.1016/j.jpba.2010.01.032
  48. Pohl P.: Determination of metal content in honey by atomic absorption and emission spectrometries. Trends Anal. Chem., 28, 117-128 (2009). https://doi.org/10.1016/j.trac.2008.09.015
  49. Mimendia A., Legin A., Merkoçi A., and del Valle M.: Use of sequential injection analysis to construct a potentiometric electronic tongue: Application to the multidetermination of heavy metals. Sens. Actuator B-Chem., 146, 420-426 (2010). https://doi.org/10.1016/j.snb.2009.11.027
  50. Wang L., Ma W., Xu L., Chen W., Zhu Y., Xu C., and Kotov N.A.: Nanoparticle-based environmental sensors. Mater. Sci. Eng. R Rep., 70, 265-274 (2010). https://doi.org/10.1016/j.mser.2010.06.012
  51. Beuchat L.R.: Surface decontamination of fruits and vegetables eaten raw: a review. World Health Organization., 42 (1998).
  52. Harris L., Farber J., Beuchat L., Parish M., Suslow T., Garrett E., and Busta F.: Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf., 2, 78-141 (2003). https://doi.org/10.1111/j.1541-4337.2003.tb00031.x
  53. Food and Drug Administration.: Analysis and evaluation of preventive control measures for the control and reduction/elimination of microbial hazards on fresh and fresh-cut produce; https://www.fda.gov/Food/FoodScienceResearch/ucm091363.htm. Accessed Oct. 4th, (2018).
  54. Sivapalasingam S., Friedman C.R., Cohen L., and Tauxe R.V.: Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot., 67, 2342-2353 (2004). https://doi.org/10.4315/0362-028X-67.10.2342
  55. Brenner F., Villar R., Angulo F., Tauxe R., and Swaminathan B.: Salmonella nomenclature. J. Clin. Microbiol., 38, 2465-2467 (2000). https://doi.org/10.1128/JCM.38.7.2465-2467.2000
  56. Lan R., Reeves P.R., and Octavia S.: Population structure, origins and evolution of major Salmonella enterica clones. Infect. Genet. Evol., 9, 996-1005 (2009). https://doi.org/10.1016/j.meegid.2009.04.011
  57. Tauxe R., Kruse H., Hedberg C., Potter M., Madden J., and Wachsmuth K.: Microbial hazards and emerging issues associated with produce a preliminary report to the national advisory committee on microbiologic criteria for foods. J. Food Prot., 60, 1400-1408 (1997). https://doi.org/10.4315/0362-028X-60.11.1400
  58. Dunkley K., Callaway T., Chalova V., McReynolds J., Hume M., Dunkley C., Kubena L., Nisbet D., and Ricke S.: Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe., 15, 26-35 (2009). https://doi.org/10.1016/j.anaerobe.2008.05.007
  59. Garrity G.M., Brenner D.J., Krieg N.R., and Staley J.T.: Part B: The Gammaproteobacteria. Bergey's Manual of Systematic Bacteriology. Volume 2: The Proteobacteria, Springer, New York (2005).
  60. World Health Organization.: Future directions for research on enterotoxigenic Escherichia coli vaccines for developing countries. Wkly. Epidemiol. Rec., 81, 97-104 (2006).
  61. Graeme K.A. and Pollack C.V.: Heavy metal toxicity, part I: arsenic and mercury. J. Emerg. Med., 16, 45-56 (1998). https://doi.org/10.1016/S0736-4679(97)00241-2
  62. Steele B., Murphy N., Arbus G., and Rance C.: An outbreak of hemolytic uremic syndrome associated with ingestion of fresh apple juice. J. Pediatr., 101, 963-965 (1982). https://doi.org/10.1016/S0022-3476(82)80021-8
  63. U.S. Food and Drug Administraction: Multistate Outbreak of E. coli O157: H7 Infections Linked to Romaine Lettuce; https://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm604254.htm. Accessed Oct. 4th, (2018).
  64. Hale T.L.: Genetic basis of virulence in Shigella species. Microbiol. Rev., 55, 206-224 (1991). https://doi.org/10.1128/MMBR.55.2.206-224.1991
  65. Kotloff K.L., Winickoff J.P., Ivanoff B., Clemens J.D., Swerdlow D.L., Sansonetti P.J., Adak G., and Levine M.: Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World. Health. Organ., 77, 651-666 (1999).
  66. Portugal F.H., Colwell R.R., Huq A., and Chowdhury A.: Compositions and methods for differentiating among shigella species and shigella from E. coli species, Google Patents (2011).
  67. Kothary M.H. and Babu U.S..: Infective dose of foodborne pathogens in volunteers: a review. J. Food Saf., 21, 49-68 (2001). https://doi.org/10.1111/j.1745-4565.2001.tb00307.x
  68. Warren B., Parish M., and Schneider K.: Shigella as a foodborne pathogen and current methods for detection in food. Crit. Rev. Food Sci. Nutr., 46, 551-567 (2006). https://doi.org/10.1080/10408390500295458
  69. Graves L.M., Swaminathan B., and Hunter S.B.: Subtyping Listeria monocytogenes. Food science and technology. Marcel dekker, New York, pp. 283 (2007).
  70. Jadhav S., Bhave M., and Palombo E.A.: Methods used for the detection and subtyping of Listeria monocytogenes. J. Microbiol. Methods., 88, 327-341 (2012). https://doi.org/10.1016/j.mimet.2012.01.002
  71. Schoeni J.L. and Lee Wong A.C.: Bacillus cereus food poisoning and its toxins. J. Food Prot., 68, 636-648 (2005). https://doi.org/10.4315/0362-028X-68.3.636
  72. Andersson A. and Ronner U.: Adhesion and removal of dormant, heat-activated, and germinated spores of three strains of Bacillus cereus. Biofouling., 13, 51-67 (1998). https://doi.org/10.1080/08927019809378370
  73. Kramer J.M. and Gilbert R.J.: Bacillus cereus and other Bacillus species. Foodborne bacterial pathogens. Marcel dekker, New York, pp. 21-70 (1989).
  74. Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO).: Microbiological hazards in fresh leafy vegetables and herbs: meeting report. Vol. 14. World Health Organization (2008).
  75. Kroneman A., Verhoef L., Harris J., Vennema H., Duizer E., Van Duynhoven Y., Gray J., Iturriza M., Bottiger B., and Falkenhorst G.: Analysis of integrated virological and epidemiological reports of Norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006. J. Clin. Microbiol., 46, 2959-2965 (2008). https://doi.org/10.1128/JCM.00499-08
  76. Scallan E., Hoekstra R.M., Angulo F.J., Tauxe R.V., Widdowson M.-A., Roy S.L., Jones J.L., and Griffin P.M.: Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis., 17, 7 (2011). https://doi.org/10.3201/eid1701.P11101
  77. Vinje J.: Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol., 373-381(2014).
  78. Bjorland J., Bryan R.T., Strauss W., Hillyer G.V., and McAuley J.B.: An outbreak of acute fascioliasis among Aymara Indians in the Bolivian Altiplano. Clin. Infect. Dis., 21, 1228-1234 (1995). https://doi.org/10.1093/clinids/21.5.1228
  79. Raisanen S., Ruuskanen L., and Nyman S.: Epidemic ascariasis-evidence of transmission by imported vegetables. Scand. J. Prim. Health. Care., 3, 189-191 (1985). https://doi.org/10.3109/02813438509013944
  80. World Health Organization (WHO).: Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases 2015. Vol. 3. World Health Organization (2015).
  81. Gupta S., Satpati S., Nayek S., and Garai D.: Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environ. Monit. Assess., 165, 169-177 (2010). https://doi.org/10.1007/s10661-009-0936-3
  82. Amoah I.D., Singh G., Stenstrom T.A., and Reddy P.: Detection and quantification of soil-transmitted helminths in environmental samples: a review of current state-of-the-art and future perspectives. Acta. Trop., 169, 187-201 (2017). https://doi.org/10.1016/j.actatropica.2017.02.014
  83. Schneider K.R., Schneider R.G., Hubbard M.A., and Richardson S.: Preventing foodborne illness: Salmonellosis1. IFAS, University of Florida (2000).
  84. Kendall P.: Bacterial foodborne illness. Food and nutrition series. Food Nutr. Ser., 9, 300 (2003).
  85. Tarr P.I., Gordon C.A., and Chandler W.L.: Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. The lancet., 365, 1073-1086 (2005). https://doi.org/10.1016/S0140-6736(05)74232-X
  86. Boyce T.G., Swerdlow D.L., and Griffin P.M.: Escherichia coli O157: H7 and the hemolytic-uremic syndrome. N. Engl. J. Med., 333, 364-368 (1995). https://doi.org/10.1056/NEJM199508103330608
  87. Sansonetti P.: Genetic and molecular basis of epithelial cell invasion by Shigella species. Rev. Infect. Dis., 13, S285-S292 (1991). https://doi.org/10.1093/clinids/13.Supplement_4.S285
  88. Disson O., Grayo S., Huillet E., Nikitas G., Langa-Vives F., Dussurget O., Ragon M., Le Monnier A., Babinet C., and Cossart P.: Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature., 455, 1114 (2008). https://doi.org/10.1038/nature07303
  89. Lowe D.E., Robbins J.R., and Bakardjiev A.I.: Animal and human tissue models of vertical Listeria monocytogenes transmission and implications for other pregnancy-associated infections. Infect. Immun., 00801-17 (2018).
  90. Montville T.J. and Matthews K.R.: Principles which influence microbial growth, survival, and death in foods. Food microbiology fundamentals and frontiers. American society for microbiology. Washington, D.C., pp. 13-29 (1997).
  91. Goller J., Dimitriadis A., Tan A., Kelly H., and Marshall J.: Long-term features of norovirus gastroenteritis in the elderly. J. Hosp. Infect., 58, 286-291 (2004). https://doi.org/10.1016/j.jhin.2004.07.001
  92. Lee K.-M., Runyon M., Herrman T.J., Phillips R., and Hsieh J.: Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Contr., 47, 264-276 (2015). https://doi.org/10.1016/j.foodcont.2014.07.011
  93. Gehring A.G., Brewster J.D., Irwin P.L., Tu S.-I., and Van Houten L.J.: 1-Naphthyl phosphate as an enzymatic substrate for enzyme-linked immunomagnetic electrochemistry. J. Electroanal. Chem., 469, 27-33 (1999). https://doi.org/10.1016/S0022-0728(99)00183-7
  94. Deisingh A. and Thompson M.: Strategies for the detection of Escherichia coli O157: H7 in foods. J. Appl. Microbiol., 96, 419-429 (2004). https://doi.org/10.1111/j.1365-2672.2003.02170.x
  95. Zunabovic M., Domig K.J., and Kneifel W.: Practical relevance of methodologies for detecting and tracing of Listeria monocytogenes in ready-to-eat foods and manufacture environments-A review. LWT., 44, 351-362 (2011). https://doi.org/10.1016/j.lwt.2010.08.005
  96. Spadafora N.D., Paramithiotis S., Drosinos E.H., Cammarisano L., Rogers H.J., and Muller C.T.: Detection of Listeria monocytogenes in cut melon fruit using analysis of volatile organic compounds. Food Microbiol., 54, 52-59 (2016). https://doi.org/10.1016/j.fm.2015.10.017
  97. Collee J., Duguid J., Fraser A., Marmion B., and Simmons A.: Laboratory strategy in the diagnosis of infective syndromes. Mackie and McCartney practical medical microbiology. 14th edition, Churchill livingstone, London, pp. 53-94 (1996).
  98. Ueda S., Yamaguchi M., Iwase M., and Kuwabara Y.: Detection of emetic Bacillus cereus by real-time PCR in foods. Biocontrol. Sci., 18, 227-232 (2013). https://doi.org/10.4265/bio.18.227
  99. Kim H.-Y., Kwak I.-S., Hwang I.-G., and Ko G.: Optimization of methods for detecting norovirus on various fruit. J. Virol. Methods, 153, 104-110 (2008). https://doi.org/10.1016/j.jviromet.2008.07.022
  100. Gyawali P., Ahmed W., Jagals P., Sidhu J., and Toze S.: Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR. Exp. Parasitol., 159, 160-167 (2015). https://doi.org/10.1016/j.exppara.2015.09.002
  101. Gorham J.: Hard foreign objects in food as a cause of injury and disease: A review. Foodborne Disease Handbook. Marcel dekker, New York, pp.615-626 (1994).
  102. Keener L.: Chemical and physical hazards: the "other" food safety risks. Food Testing and Analysis Magazine; http://www.foodsafetyprofessionals.com/keenerhazards.pdf Accessed Oct. 4th, (2018).