참고문헌
- Arnorld, D.N., Brezzi, F., Cockburn, B. and Marini, L.D. (2002), "Unified analysis of discontinuous Galerkin methods for elliptic problems", SIAM J. Numer. Analy., 39(5), 1749-1779. https://doi.org/10.1137/S0036142901384162
- Bavestrello, H., Avery, P. and Farhat, C. (2007), "Incorporation of linear multipoint constraints in substructure based iterative solvers. Part II: Blending FETI-DP and mortar methods and assembling floating substructures", Comput. Meth. Appl. Mech. Eng., 196, 1347-1368. https://doi.org/10.1016/j.cma.2006.03.024
- Bayat, H., Kramer, J., Wunderlich, L., Wulfinghoff, S., Wohlmuth, B., Resse, S. and Wieners, C. (2018), "Numerical evaluation of discontinuous and nonconforming finite element methods in nonlinear solid mechanics," Comput. Mech., 1-15.
- Becker, R., Hansbo, P. and Stenberg, R. (2003), "A finite element method for domain decomposition with non-matching grids", Math. Modell. Numer. Analy., 37(2), 209-225. https://doi.org/10.1051/m2an:2003023
- Belgacem, F.B., Hild, P. and Laborde, P. (1999), "Extension of the mortar finite element method to a variational inequality modeling unilateral contact", Math. Mod. Meth. Appl. Sci., 9(2), 287-303. https://doi.org/10.1142/S0218202599000154
- Bernardi, C., Maday, Y. and Patera, A.T. (1992), "A new nonconforming approach to domain decomposition: The mortar element method", Nonlin. Part. Different. Equat. Their Appl., 13-51.
- Bernardi, C., Rebello, C., Vera, C. and Coronil, C. (2009), "A posteriori error analysis for two nonoverlapping domain decomposition techniques", Comput. Meth. Appl. Mech. Eng., 59(6), 1214-1236.
- Bernardi, C., Rebello, T.C. and Vera, E.C. (2008), "A FETI method with a mesh independent condition number for the iteration matrix", Comput. Meth. Appl. Mech. Eng., 197(13-16), 1410-1429. https://doi.org/10.1016/j.cma.2007.11.019
- Bitencourt, L.A.G., Jr, Manzoli, O.L., Prazeres, P.G.C., Rodrigues, E.A. and Bittencourt, T.N. (2015), "A coupling technique for non-matching finite element meshes", Comput. Meth. Appl. Mech. Eng., 290, 19-44. https://doi.org/10.1016/j.cma.2015.02.025
- Brezzi, F. and Fortin, M. (1991), Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics.
- Di Pietro, D.A. and Nicaise, S. (2013), "A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media", Appl. Numer. Math., 63, 105-116. https://doi.org/10.1016/j.apnum.2012.09.009
- Dickopf, T. and Krause, R. (2009), "Efficient simulation of multi-body contact problems on complex geometries: A flexible decomposition approach using constrained minimization", Int. J. Numer. Meth. Eng., 77(13), 1834-1862. https://doi.org/10.1002/nme.2481
- Dolbow, J.E. and Harari, I. (2009), "An efficient finite element method for embedded interface problems", Int. J. Numer. Meth. Eng., 78(2), 229-252. https://doi.org/10.1002/nme.2486
- Farhat, C. (1991), "A method for finite element tearing and interconnecting and its parallel solution algorithm", Int. J. Numer. Meth. Eng., 32(6), 1205-1227. https://doi.org/10.1002/nme.1620320604
- Farhat, C., Lacour, C. and Rixen, D. (2007), "Incorporation of linear multipoint constraints in substructure based iterative solvers. Part I: A numerically scalable algorithm", Int. J. Numer. Meth. Eng., 43(6), 997-1016. https://doi.org/10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B
- Fischer, K.A. and Wriggers, P. (2005), "Frictionless 2D contact formulations for finite deformations based on the mortar method", Comput. Mech., 36(3), 226-244. https://doi.org/10.1007/s00466-005-0660-y
- Grieshaber, B., McBride, A. and Reddy, B. (2015), "Uniformly convergent interior penalty methods using multilinear approximations for problems in elasticity", SIAM J. Numer. Analy., 53(5), 2255-2278. https://doi.org/10.1137/140966253
- Haikal, G. and Hjelmstad, K.D. (2010), "An enriched discontinuous Galerkin formulation for the coupling of non-conforming meshes", Fin. Elem. Analy. Des., 46(6), 496-503. https://doi.org/10.1016/j.finel.2009.12.008
- Haikal, G. (2009), "A stabilized finite element formulation of non-smooth contact", Ph.D. Dissertation, University of Illinois-Urbana Champaign, Illinois, U.S.A.
- Hansbo, A. and Hansbo, P. (2002), "An unfitted finite element method, based on Nitsche's method, for elliptic interface problems", Comput. Meth. Appl. Mech. Eng., 191(47-48), 5537-5552. https://doi.org/10.1016/S0045-7825(02)00524-8
- Hansbo, P. and Larsson, F. (2016) "The nonconforming linear strain tetrahedron for a large deformation elasticity problem", Computat. Mech., 58(6), 929-935. https://doi.org/10.1007/s00466-016-1323-x
- Hansbo, P., Lovadina, C., Perugia, I. and Angalli, G. (2005), "A lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes", Numeris. Mathemat., 100(1), 91-115. https://doi.org/10.1007/s00211-005-0587-4
- Jin, S., Sohn, D., Lim, J.H. and Im, S. (2015), "A node-to-node scheme with the aid of variable-node elements for elasto-plastic contact analysis", Int. J. Numer. Meth. Eng., 102(12), 1761-1783. https://doi.org/10.1002/nme.4862
- Kim, H.G. (2002), "Interface element method (IEM) for a partitioned system with non-matching interfaces", Comput. Meth. Appl. Mech. Eng., 191(29-30), 3165-3194. https://doi.org/10.1016/S0045-7825(02)00255-4
- Kim, H.G. (2003), "Interface element method: Treatment of non-matching nodes at the ends of interfaces between partitioned domains", Comput. Meth. Appl. Mech. Eng., 192(15), 1841-1858. https://doi.org/10.1016/S0045-7825(03)00205-6
- Laurie, D. (1997), "Calculation of gauss-kronrod quadrature rules", Math. Comput. Am. Math. Soc., 66(219), 1133-1145. https://doi.org/10.1090/S0025-5718-97-00861-2
- Le Tallec, P. and Sassi, T. (1995) "Domain decomposition with nonmatching grids: Augmented lagrangian approach", Math. Comput., 64(212), 1367-1396. https://doi.org/10.1090/S0025-5718-1995-1308457-5
- Liu, R., Wheeler, M.F. and Yotov, I. (2013), "On the spatial formulation of discontinuous Galerkin methods for finite elastoplasticity", Comput. Meth. Appl. Mech. Eng., 253, 219-236. https://doi.org/10.1016/j.cma.2012.07.015
- Liu, R., Wheeler, M. and Dawson, C. (2009), "A three-dimensional nodal-based implementation of a family of discontinuous Galerkin methods for elasticity problems", Comput. Struct., 87(3-4), 141-150. https://doi.org/10.1016/j.compstruc.2008.11.009
- Lloberas-Valls, O., Cafiero, M., Cante, J., Ferrer, A. and Oliver, J. (2017), "The domain interface method in non-conforming domain decomposition multifield problems", Comput. Mech., 59(4), 579-610. https://doi.org/10.1007/s00466-016-1361-4
- Masud, A., Truster, T. and Bergman, L.A. (2012), "A unified formulation for interface coupling and frictional contact modeling with embedded error estimation", Int. J. Numer. Meth. Eng., 92(2), 144-177.
- Montero, J. and Haikal, G. (2018), "Modeling beam-solid finite element interfaces: A stabilized formulation for contact and coupled systems", Int. J. Appl. Mech., Imper. Colleg. Press, 10(9), 1850095.
- Nitsche, J. (1971), "U ber ein variationsprinzip zur losung von dirichlet problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind", Abhandlungen in der Mathematik an der Universitat Hamburg, 36(1), 9-15. https://doi.org/10.1007/BF02995904
- Popp, A. and Wall, W.A. (2014), "Dual mortar methods for computational contact mechanics-overview and recent developments", GAMM-Mitteilungen, 37(1), 66-84. https://doi.org/10.1002/gamm.201410004
- Puso, M.A. and Laursen, T.A. (2004), "A mortar segment-to-segment contact method for large deformation solid mechanics", Comput. Meth. Appl. Mech. Eng., 193(6-8), 601-629. https://doi.org/10.1016/j.cma.2003.10.010
- Riviere, B., Wheeler, M.F. and Girault, V. (1999), "Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I", Comput. Geosci., 3(3-4), 337-360. https://doi.org/10.1023/A:1011591328604
- Sanders, J., Dolbow, J.E. and Laursen, T.A. (2009), "On methods for stabilizing constraints over enriched interfaces in elasticity", Int. J. Numer. Meth. Eng., 78(9), 1009-1036. https://doi.org/10.1002/nme.2514
- Simo, J.C. and Hughes, T.J.R. (1998), Computational Inelasticity, Springer.
- Solberg, J.M. and Papadopoulos, P. (2005), "An analysis of dual formulations for the finite element solution of two-body contact problems", Comput. Meth. Appl. Mech. Eng., 194(25-26), 2734-2780. https://doi.org/10.1016/j.cma.2004.06.045
- Solberg, J.M., Jones, R.E. and Papadopoulos, P. (2007), "A family of simple two-pass dual formulations for the finite element solution of contact problems", Comput. Meth. Appl. Mech. Eng., 196(4-6), 782-802. https://doi.org/10.1016/j.cma.2006.05.011
- Wihler, T. (2006), "Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems", Math. Comput., 75(255), 1087-1102. https://doi.org/10.1090/S0025-5718-06-01815-1
- Wohlmuth, B.I. (2000), "A mortar finite element method using dual spaces for the lagrange multiplier", SIAM J. Numer. Analy., 38(3), 989-1012. https://doi.org/10.1137/S0036142999350929
- Wriggers, P., Rust, W.T. and Reddy, B.D. (2016), "A virtual element method for contact", Comput. Mech., 58(6), 1039-1050. https://doi.org/10.1007/s00466-016-1331-x
- Yang, B., Laursen, T.A. and Xiaonong, M. (2005), "Two-dimensional mortar contact methods for large deformation frictional sliding", Int. J. Numer. Meth. Eng., 62(9), 1183-1225. https://doi.org/10.1002/nme.1222