DOI QR코드

DOI QR Code

Transversely isotropic thick plate with two temperature & GN type-III in frequency domain

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Kaur, Iqbal (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2018.10.19
  • Accepted : 2019.01.27
  • Published : 2019.02.25

Abstract

This investigation is focused on the variations in transversely isotropic thick circular plate due to time harmonic thermomechanical sources. The homogeneous thick circular plate in presence and absence of energy dissipation and two temperatures has been considered. Hankel transform is used for solving field equations. The analytical expressions of conductive temperature, displacement components, and stress components are computed in the transformed domain. The effects of frequency at different values are represented graphically. Some specific cases are also figured out from the current research.

Keywords

References

  1. Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/CSM.2017.6.4.399
  2. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369
  3. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
  4. Chen, P.J. and Gurtin, E.M. (1968), "On a theory of heat conduction involving two temperatures", Zeitschriftfur Angewandte Mathematik und Physik, 19(4), 614-627. https://doi.org/10.1007/BF01594969
  5. Chen, P.J., Gurtin, E.M. and Williams, O.W. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Zeitsch Riftfurangewandte Mathematik und Physik, 20(1), 107-112.
  6. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Zeitschriftfur Angewandte Mathematik und Physik ZAMP, 19(4), 969-970. https://doi.org/10.1007/BF01602278
  7. DelfimSoares, J., Goncalves, K.A. and Telles, J.C. (2015), "Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure", Coupled Syst. Mech., 4(3), 263-277. https://doi.org/10.12989/csm.2015.4.3.263
  8. Dhaliwal, R. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
  9. Duhamel, J.M. (1838), "Memories of the molecular actions developed by changes in temperatures in solids", Mummy Div. Sav. (AcadSci Par.), 5, 440-498.
  10. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Two-temperature theory in green-naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol.-Springer Nat., 24(2), 951-961.
  11. Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131
  12. Ezzat, M. and AI-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase lag green-naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/SCS.2017.24.3.297
  13. Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Modell., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018
  14. Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189
  15. Green, A. and Nagdhi, P. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. R. Soc. Lond. A, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
  16. Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
  17. Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elast.: Phys. Math. Sci. Sol., 31(3), 189-208. https://doi.org/10.1007/BF00044969
  18. Honig, G.H. (1984), "A method for the inversion of Laplace transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  19. Tripathi, J.J., Kedar, G.D. and Deshmukh, K.C. (2016), "Generalized thermoelastic diffusion in a thick circular plate including heat source", Alexandr. Eng. J., 55(3), 2241-2249. https://doi.org/10.1016/j.aej.2016.06.003
  20. Kant, S. and Mukhopadhyay, S. (2017), "A detailed comparative study on responses of four heat conduction models for an axisymmetric problem of coupled thermoelastic interactions inside a thick plate", Int. J. Therm. Sci., 117, 196-211. https://doi.org/10.1016/j.ijthermalsci.2017.03.018
  21. Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
  22. Kumar, R. and Sharma, P. (2017), "Effect of factional order on energy ratios at the boundary surface of elastic-piezothermoelastic media", Coupled Syst. Mech., 6(2), 157-174. https://doi.org/10.12989/CSM.2017.6.2.157
  23. Kumar, R., Manthena, V.R., Lamba, N.K. and Kedar, G.D. (2017), "Generalized thermoelastic axisymmetric deformation problem in a thick circular plate with dual phase lags and two temperatures", Mater. Phys. Mech., Russ. Acad. Sci., 32(2), 123-132.
  24. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Modell., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
  25. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupled Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/CSM.2017.6.3.317
  26. Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  27. Marin, M. (1997), "On weak solutions in elasticity of dipolar bodies with voids", J. Comput. Appl. Math., 82(1-2), 291-297. https://doi.org/10.1016/S0377-0427(97)00047-2
  28. Marin, M. (2008), "Weak solutions in elasticity of dipolar porous materials", Math. Prob. Eng., 1-8.
  29. Marin, M. (2016), "An approach of a heat flux dependent theory for micropolar porous media", Meccan. 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2
  30. Marin, M. and Baleanu, D. (2016), "On vibrations in thermoelasticity without energy dissipation for micropolar bodies", Bound. Val. Prob., 2016(1), 111. https://doi.org/10.1186/s13661-016-0620-9
  31. Moreno-Navarro, P., Ibrahimbegovic, A. and Perez-Aparicio, J.L. (2018), "Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields", Coupled Syst. Mech., 7(1), 5-25. https://doi.org/10.12989/CSM.2018.7.1.005
  32. Press, W.T. (1986), Numerical Recipes in Fortran, Cambridge University Press Cambridge.
  33. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
  34. Slaughter, W.S. (2002), The Linearized Theory of Elasticity, Birkhauser.
  35. Tripathi, J., Kedar, G.D. and Deshmukh, K.C. (2015), "Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply", Acta Mech., 226(7), 2121-2134. https://doi.org/10.1007/s00707-015-1305-7
  36. Vinyas, M. and Kattimani, S. (2017), "Multiphysics response of magneto-electro-elastic beams in thermomechanical environment", Coupled Syst. Mech., 6(3), 351-367. https://doi.org/10.12989/CSM.2017.6.3.351
  37. Youssef, H. (2011), "Theory of two-temperature thermoelasticity without energy dissipation", J. Therm. Stress., 34(2), 138-146. https://doi.org/10.1080/01495739.2010.511941

Cited by

  1. Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory vol.8, pp.6, 2019, https://doi.org/10.12989/csm.2019.8.6.501
  2. Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures vol.34, pp.2, 2019, https://doi.org/10.12989/scs.2020.34.2.309
  3. Reflection of plane harmonic wave in rotating media with fractional order heat transfer vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.289
  4. Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields vol.10, pp.1, 2021, https://doi.org/10.12989/csm.2021.10.1.039