References
- Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/CSM.2017.6.4.399
- Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
- Chen, P.J. and Gurtin, E.M. (1968), "On a theory of heat conduction involving two temperatures", Zeitschriftfur Angewandte Mathematik und Physik, 19(4), 614-627. https://doi.org/10.1007/BF01594969
- Chen, P.J., Gurtin, E.M. and Williams, O.W. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Zeitsch Riftfurangewandte Mathematik und Physik, 20(1), 107-112.
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Zeitschriftfur Angewandte Mathematik und Physik ZAMP, 19(4), 969-970. https://doi.org/10.1007/BF01602278
- DelfimSoares, J., Goncalves, K.A. and Telles, J.C. (2015), "Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure", Coupled Syst. Mech., 4(3), 263-277. https://doi.org/10.12989/csm.2015.4.3.263
- Dhaliwal, R. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
- Duhamel, J.M. (1838), "Memories of the molecular actions developed by changes in temperatures in solids", Mummy Div. Sav. (AcadSci Par.), 5, 440-498.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Two-temperature theory in green-naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol.-Springer Nat., 24(2), 951-961.
- Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131
- Ezzat, M. and AI-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase lag green-naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/SCS.2017.24.3.297
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Modell., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189
- Green, A. and Nagdhi, P. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. R. Soc. Lond. A, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
- Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
- Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elast.: Phys. Math. Sci. Sol., 31(3), 189-208. https://doi.org/10.1007/BF00044969
- Honig, G.H. (1984), "A method for the inversion of Laplace transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Tripathi, J.J., Kedar, G.D. and Deshmukh, K.C. (2016), "Generalized thermoelastic diffusion in a thick circular plate including heat source", Alexandr. Eng. J., 55(3), 2241-2249. https://doi.org/10.1016/j.aej.2016.06.003
- Kant, S. and Mukhopadhyay, S. (2017), "A detailed comparative study on responses of four heat conduction models for an axisymmetric problem of coupled thermoelastic interactions inside a thick plate", Int. J. Therm. Sci., 117, 196-211. https://doi.org/10.1016/j.ijthermalsci.2017.03.018
- Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
- Kumar, R. and Sharma, P. (2017), "Effect of factional order on energy ratios at the boundary surface of elastic-piezothermoelastic media", Coupled Syst. Mech., 6(2), 157-174. https://doi.org/10.12989/CSM.2017.6.2.157
- Kumar, R., Manthena, V.R., Lamba, N.K. and Kedar, G.D. (2017), "Generalized thermoelastic axisymmetric deformation problem in a thick circular plate with dual phase lags and two temperatures", Mater. Phys. Mech., Russ. Acad. Sci., 32(2), 123-132.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Modell., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupled Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/CSM.2017.6.3.317
- Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Marin, M. (1997), "On weak solutions in elasticity of dipolar bodies with voids", J. Comput. Appl. Math., 82(1-2), 291-297. https://doi.org/10.1016/S0377-0427(97)00047-2
- Marin, M. (2008), "Weak solutions in elasticity of dipolar porous materials", Math. Prob. Eng., 1-8.
- Marin, M. (2016), "An approach of a heat flux dependent theory for micropolar porous media", Meccan. 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2
- Marin, M. and Baleanu, D. (2016), "On vibrations in thermoelasticity without energy dissipation for micropolar bodies", Bound. Val. Prob., 2016(1), 111. https://doi.org/10.1186/s13661-016-0620-9
- Moreno-Navarro, P., Ibrahimbegovic, A. and Perez-Aparicio, J.L. (2018), "Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields", Coupled Syst. Mech., 7(1), 5-25. https://doi.org/10.12989/CSM.2018.7.1.005
- Press, W.T. (1986), Numerical Recipes in Fortran, Cambridge University Press Cambridge.
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
- Slaughter, W.S. (2002), The Linearized Theory of Elasticity, Birkhauser.
- Tripathi, J., Kedar, G.D. and Deshmukh, K.C. (2015), "Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply", Acta Mech., 226(7), 2121-2134. https://doi.org/10.1007/s00707-015-1305-7
- Vinyas, M. and Kattimani, S. (2017), "Multiphysics response of magneto-electro-elastic beams in thermomechanical environment", Coupled Syst. Mech., 6(3), 351-367. https://doi.org/10.12989/CSM.2017.6.3.351
- Youssef, H. (2011), "Theory of two-temperature thermoelasticity without energy dissipation", J. Therm. Stress., 34(2), 138-146. https://doi.org/10.1080/01495739.2010.511941
Cited by
- Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory vol.8, pp.6, 2019, https://doi.org/10.12989/csm.2019.8.6.501
- Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures vol.34, pp.2, 2019, https://doi.org/10.12989/scs.2020.34.2.309
- Reflection of plane harmonic wave in rotating media with fractional order heat transfer vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.289
- Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields vol.10, pp.1, 2021, https://doi.org/10.12989/csm.2021.10.1.039