References
- Abbas, I.A. and Kumar, R. (2015), "Deformation in three dimensional thermoelastic medium with one relaxation time", J. Comput. Theoret. Nanosci., 12(10), 3104-3109. https://doi.org/10.1166/jctn.2015.4086
- Abbas, I.A., Kumar, R. and Rani, L. (2015), "Thermoelastic interaction in a thermally conducting cubic crystal subjected to ramp-type heating", Appl. Math. Comput., 254, 360-369. https://doi.org/10.1016/j.amc.2014.12.111
- Abbas, I.A., Marin, M. and Kumar, R. (2015), "Analytical-numerical solution of thermoelastic interactions in a semi- infinite medium with one relaxation time", J. Comput. Theoret. Nanosci., 12(2), 287-291. https://doi.org/10.1166/jctn.2015.3730
- Biswas, R.K. and Sen, S. (2011), "Fractional optimal control problems: A pseudo state-space approach", J. Vibr. Contr., 17(7), 1034-1041. https://doi.org/10.1177/1077546310373618
- Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent", Geophys. J. Roy. Astronomic. Soc., 13, 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
- Debnath, L. (1995), Integral Transform and Their Applications, CRC Press Boca Raton.
- Ezzat, M.A. (2011a), "Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer", Phys. B, 406(1), 30-35. https://doi.org/10.1016/j.physb.2010.10.005
- Ezzat, M.A. (2011b), "Theory of fractional order in generalized thermoelectric MHD", Appl. Math. Model., 35(10), 4965-4978. https://doi.org/10.1016/j.apm.2011.04.004
- Ezzat, M.A. and Ezzat, S. (2016), "Fractional thermoelasticity applications for porous asphaltic materials", Petroleum Sci., 13(3), 550-560. https://doi.org/10.1007/s12182-016-0094-5
- Ezzat, M.A. and EI-Bary. (2016), "Modelling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., 18(4), 701-731.
- Ezzat, M.A. and Fayik, M.A. (2011), "Fractional order theory of thermoelastic diffusion", J. Therm. Stress., 34, 851-872. https://doi.org/10.1080/01495739.2011.586274
- Jiang, X. and Xu, M. (2010), "The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems", Phys. A, 389(17), 3368-3374. https://doi.org/10.1016/j.physa.2010.04.023
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effect of thermal and diffusion phase lags in a thick circular plate due to a ring load with axisymmetric heat supply", Appl. Appl. Math., 11(2), 748-765.
- Kumar, R., Sharma, N. and Lata, P. (2016a), "Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091
- Kumar, R. and Sharma, P. (2017), "The effect of fractional order on energy ratios at the boundary surface of piezothermoelastic medium", Coupled Syst. Mech., 6(2), 175-187. https://doi.org/10.12989/CSM.2017.6.2.175
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magneto thermoelastic medium", Coupled Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/CSM.2017.6.3.317
- Lata, P. (2018), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/SEM.2018.66.1.113
- Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(2), 439-451. https://doi.org/10.12989/SCS.2018.27.4.439
- Marin, M. and Oechsner, A.(2017), "The effect of a dipolar structure on the holder stability in green-naghdi thermoelasticity", Contin. Mech. Thermodyn., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7
- Marin, M.(2013), "Weak solutions in elasticity of dipolar bodies with stretch", Carpath. J. Mech., 29(1), 33-40. https://doi.org/10.37193/CJM.2013.01.12
- Marin, M.(1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mech., 122(1-4), 155-168. https://doi.org/10.1007/BF01181996
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermo-elastic body with two temperatures", Abstr. Appl. Analy., 2013, 583464.
- Mahmoud, S.R.(2016), "An analytical solution for the effect of initial stress, rotation, magnetic field and a periodic loading in a thermoviscoelastic medium with a spherical cavity", Mech. Adv. Mater. Struct., 23(1), 1-7. https://doi.org/10.1080/15376494.2014.884659
- Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Integrals and Derivatives-Theory and Applications, John Wiley and Sons Inc., New York, U.S.A.
- Povstenko, Y.Z. (2005), "Fractional heat conduction equation and associated thermal stresses", J. Therm. Stress., 28(1), 83-102. https://doi.org/10.1080/014957390523741
- Povstenko, Y.Z. (2009), "Thermoelasticity that uses fractional heat conduction equation", J. Math. Stress., 162(2), 296-305.
- Povstenko, Y.Z. (2010), "Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses", Mech. Res. Commun., 37(4), 436-440. https://doi.org/10.1016/j.mechrescom.2010.04.006
- Povstenko, Y.Z. (2011), "Fractional catteneo-type equations and generalized thermoelasticity", J. Therm. Stress., 34(2), 97-114. https://doi.org/10.1080/01495739.2010.511931
- Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vatterling, W.A. (1986), Numerical Recipes, Cambridge University Press, Cambridge, The Art of Scientific Computing.
- Tripathi, J.J., Kedar, G.D. and Deshmukh, K.C. (2015), "Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply", Acta Mech., 226(7), 2121-2134. https://doi.org/10.1007/s00707-015-1305-7
- Tripathi, J.J., Warbhe, S., Deshmukh, K.C. and Verma, J. (2018), "Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source", Multidiscipl. Model. Mater. Struct., 14(1), 2-15. https://doi.org/10.1108/MMMS-04-2017-0022
- Xiong, C. and Niu, Y. (2017), "Fractional order generalized thermoelastic diffusion theory", Appl. Math. Mech., 38(8), 1091-1108. https://doi.org/10.1007/s10483-017-2230-9
- Ying, X.H. and Yun, J.X. (2015), "Time fractional dual-phase-lag heat conduction equation", Chin. Phys. B, 24(3), 034401.
- Youssef, H.M. (2006), "Two-dimensional generalized thermoelasticity problem for a half-space subjected to ramp-type heating", Eur. J. Mech./Sol., 25(5), 745-763. https://doi.org/10.1016/j.euromechsol.2005.11.005
- Youssef, H.M. (2010), "Theory of fractional order generalized thermoelasticity", J. Heat Transf., 132(6), 1-7. https://doi.org/10.1115/1.4000705
- Zenkour, A.M. and Abbas, I.A. (2014), "Thermal shock problem for a fiber-reinforced anisotropic halfspace placed in a magnetic field via GN model", Appl. Math. Comput., 246, 482-490. https://doi.org/10.1016/j.amc.2014.08.052
Cited by
- Thermomechanical response in a two-dimension porous medium subjected to thermal loading vol.30, pp.8, 2020, https://doi.org/10.1108/hff-11-2019-0803
- Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2019, https://doi.org/10.12989/sem.2021.77.3.315