Acknowledgement
Supported by : National Natural Science Foundation of China
References
- ABAQUS 6.13 (2013), Theory Reference, ABAQUS Inc..
- Architectural Institute of Japan (1996), JASS6 Steel Work Japanese Architecture Standard Specification, Architectural Institute of Japan, Japan.
- Architectural Institute of Japan (1998), Recommendations for Limit State Design of Steel Structures, Architectural Institute of Japan, Japan.
- Architectural Institute of Japan (2010), Buckling and Strength of Latticed Shells, Architectural Institute of Japan, Architectural Institute of Japan, Japan.
- Ben-Tal, A., Jarre, F., Kocvara, M., Nemirovski, A. and Zowe, J. (2000), "Optimal design of trusses under a nonconvex global buckling constraint", Optim. Eng., 1(2), 189-213. https://doi.org/10.1023/A:1010091831812
- Bi, J. (2016), "Stability analysis on large-span steel tubular truss based on finite element simulation", International Conference on Smart Grid and Electrical Automation. IEEE, 237-240.
- China Architecture & Building Press (2010), Code for Seismic Design of Buildings, China Architecture & Building Press, China.
- Dai, J., Zhe, Q., Zhang, C. and Weng, X. (2013), "Preliminary investigation of seismic damage to two steel space structures during the 2013 Lushan earthquake", Earthq. Eng. Eng. Vib., 12(3), 497-500. https://doi.org/10.1007/s11803-013-0189-6
- Dou, C., Guo, Y.L., Zhao, S.Y., Pi, Y.L. and Braford, M.A. (2013), "Elastic out-of-plane buckling load of circular steel tubular truss arches incorporating shearing effects", Eng. Struct., 52(9), 697-706. https://doi.org/10.1016/j.engstruct.2013.03.030
- Dulacska, E. and Kollar, L. (2000), "Buckling analysis of reticulated shells", Int. J. Space Struct., 15(3-4), 195-203. https://doi.org/10.1260/0266351001495134
- Halpern, A.B. and Adriaenssens, S. (2015), "Nonlinear elastic in-plane buckling of shallow truss arches", J. Bridge Eng., 20(10), 04014117.
- Kato, S. (2014), "Guide to buckling load evaluation of metal reticulated roof structures", International Association for Shell and Spatial Structures.
- Kollar, L. and Dulacska, E. (1984), Buckling of Shells for Engineers, John Wiley & Sons.
- Konkong, N., Aramraks, T. and Phuvoravan, K. (2017), "Buckling length analysis for compression chord in cold-formed steel cantilever truss", Int. J. Steel Struct. 17(2), 775-787. https://doi.org/10.1007/s13296-017-6031-7
- Long, Y., Bao, S., Kuang, W. and Yuan, S. (2001), Structural Mechanics, Higher Education Press, Beijing, China.
- Ma, Y.Y., Ma, H.H., Fan, F. and Yu, Z.W. (2019), "Experimental and theoretical analysis on static behavior of bolt-column joint under in-plane direction bending in single-layer reticulate shells", Thin Wall. Struct., 135, 472-485. https://doi.org/10.1016/j.tws.2018.11.009
- Madah, H. and Amir, O. (2017), "Truss optimization with buckling considerations using geometrically nonlinear beam modeling", Comput. Struct., 192, 233-247. https://doi.org/10.1016/j.compstruc.2017.07.023
- Ogawa, T., Kumagai, T., Kuruma, S. and Minowa, K. (2008), "Buckling load of elliptic and hyperbolic paraboloidal steel single-layer reticulated shells of rectangular plan", IASS J., 49(1), 31-36.
- Pacific Earthquake Engineering Research Center, California, America. https://peer.berkeley.edu/
- Ramesh, G. and Krishnamoorthy, C. (2005), "Inelastic post-buckling analysis of truss structures by dynamic relaxation method", Int. J. Numer. Meth. Eng., 37(21), 3633-57. https://doi.org/10.1002/nme.1620372105
- Rozvany, G.I.N. (1996), "Difficulties in truss topology optimization with stress, local buckling and system stability constraints", Struct. Optim., 11(3-4), 213-217. https://doi.org/10.1007/BF01197036
- Sui, Q., Lai, C. and Fan, H. (2018), "Buckling analyses of double-shell octagonal lattice truss composite structures", J. Compos. Mater., 52(9), 1227-1237. https://doi.org/10.1177/0021998317723446
- Tada, M. and Suito, A. (1998), "Static and dynamic post-buckling behavior of truss structures", Eng. Struct., 20(4-6), 384-389. https://doi.org/10.1016/S0141-0296(97)00018-7
- Thai, H.T. and Kim, S.E. (2011), "Nonlinear inelastic time-history analysis of truss structures", J. Constr. Steel Res., 67(12), 1966-1972. https://doi.org/10.1016/j.jcsr.2011.06.015
- Tugilimana, A., Coelho, R.F. and Thrall, A.P. (2018), "Including global stability in truss layout optimization for the conceptual design of large-scale applications", Struct. Multidisc. Optim., 57(3), 1213-1232. https://doi.org/10.1007/s00158-017-1805-2
- Wattanamankong, N., Petchsasithon, A. and Dhirasedh, S. (2017), "Analysis of lateral buckling of bar with axial force accumulation in truss", IOP Conference Series: Materials Science and Engineering, 216(1), 012037. https://doi.org/10.1088/1757-899X/216/1/012037
- Zhang, M., Parke, G., Tian, S., Huang, Y. and Zhou, G. (2018) "Criterion for judging seismic failure of suspen-domes based on strain energy density", Earthq. Struct., 15(2), 123-132. https://doi.org/10.12989/EAS.2018.15.2.123
- Zhang, Q., An, Y., Zhao, Z., Fan, F. and Shen, S. (2019), "Model selection for super-long span mega-latticed structures", J. Constr. Steel Res., 154, 1-13. https://doi.org/10.1016/j.jcsr.2018.11.017
- Zhong, J., Zhang, J., Zhi, X. and Fan, F. (2018) "Identification of dominant modes of single-layer reticulated shells under seismic excitations", Thin Wall. Struct., 127:676-687. https://doi.org/10.1016/j.tws.2018.03.004