DOI QR코드

DOI QR Code

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor (Special & Multifunctional Structures Laboratory (SMSL), CSIR-Structural Engineering Research Centre) ;
  • Sasmal, Saptarshi (Special & Multifunctional Structures Laboratory (SMSL), CSIR-Structural Engineering Research Centre) ;
  • Srinivas, V. (Special & Multifunctional Structures Laboratory (SMSL), CSIR-Structural Engineering Research Centre)
  • Received : 2017.06.16
  • Accepted : 2019.01.14
  • Published : 2019.02.25

Abstract

The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

Keywords

References

  1. Abdalla, H. M. and Karihaloo, B.L. (2003), "Determination of size-independent specific fracture energy of concrete from three point-bend and wedge splitting tests", Mag. Concrete Res., 55(2), 133-141. https://doi.org/10.1680/macr.2003.55.2.133
  2. Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fibre reinforced concrete", Constr. Build. Mater., 25(11), 4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049
  3. Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Hemelrijck, D.V. (2016), "Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation", Smart Struct. Syst., 17(1), 91-105. https://doi.org/10.12989/sss.2016.17.1.091
  4. Alam, S. Y., Loukili, A. and Grondin, F. (2012), "Monitoring crack openings in concrete beams with different sizes using digital image correlation technique", Eur. J. Environ. Civil Eng., 16(7), 818-813. https://doi.org/10.1080/19648189.2012.672211
  5. Barsoum, F.F., Suleman, J., Korcak, A. and Hill, E.V.K. (2009), "Acoustic emission monitoring and fatigue life prediction in axially loaded notched steel specimens", J. Acoust. Emission, 27, 40-63.
  6. Basri, S.R., Bunnori, N.M., Abdul Kudus, S., Shahidan, S. and Jamil, M.N.M. (2012), "Evaluation of reinforced concrete damage using intensity analysis in acoustic emission technique", Proceedings of the International Conference on System Engineering and Modeling, IPCSIT, 34, IACSIT Press, Singapore.
  7. Bazant, Z.P. and Zhengzhi, L. (1996), "Zero-Brittleness size - effect method for one-size fracture test of concrete", J. Eng. Mech. - ASCE, 122, 458-468. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(458)
  8. Benedetti, D.M. and Nanni, A. (2014), "Acoustic emission intensity analysis for in situ evaluation of reinforced concrete slabs", J. Mater. Civil Eng. - ASCE, 26(1), 6-13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000794
  9. Gu, A., Luo, Y. and Xu, B. (2015), "Experimental study on acoustic emission characteristics of reinforced concrete components", Smart Struct. Syst., 16(1), 67-79. https://doi.org/10.12989/sss.2015.16.1.067
  10. Han, W.Q. and Zhou, J.Y. (2013), "Acoustic emission characterization methods of damage modes identification on carbon fiber twill weave laminate", Sci. China-Technol. Sci., 56(9), 2228-2237. https://doi.org/10.1007/s11431-013-5296-0
  11. Hamdi, S.E., Le, D.A., Simon, L., Plantier, G., Sourice, A. and Feuilloy, M. (2013), "Acoustic emission pattern recognition approach based on Hilbert-Huang transform for structural health monitoring in polymer-composite materials", Appl. Acoust., 74(5), 746-757. https://doi.org/10.1016/j.apacoust.2012.11.018
  12. Hild, F. and Roux, S. (2006), "Digital image correlation: From displacement measurement to identification of elastic properties - A review", Strain, 42, 69-80. https://doi.org/10.1111/j.1475-1305.2006.00258.x
  13. Hu, S., Lu, J. and Xio, F. (2013), "Evaluation of fracture procedure based on acoustic emission parameters", Constr. Build. Mater., 47, 1249-1256. https://doi.org/10.1016/j.conbuildmat.2013.06.034
  14. Huang, N.E. and Shen, S.S.P. (2005), "Hilbert-Huang Transform and its application", Singapore, World Scientific Publishing Co. Pte. Ltd.
  15. Kai, D., Hu, X. and Wittmann, F.H. (2003), "Boundary effect on concrete fracture and non - constant fracture energy distribution", Eng. Fract. Mech., 70(16), 2257-2268. https://doi.org/10.1016/S0013-7944(02)00223-0
  16. Karihaloo, B.L. and Nallathambi, P. (1989), "Fracture toughness of plain concrete from three-point bend specimens", Mater. Struct., 22(3), 185-193. https://doi.org/10.1007/BF02472186
  17. Lawler, J.S., Keane, D.T. and Shah, S.P. (2001), "Measuring threedimensional damage in concrete under compression", ACI Mater. J., 98(6), 465-75.
  18. Lee, M.K. and Barr, B.I.G. (2004), "An overview of the fatigue behavior of plain and fiber reinforced concrete", Cement Concrete Compos., 26, 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7
  19. Lin, L. and Chu, F. (2012), "HHT-based AE characteristics of natural fatigue cracks in rotating shafts", Mech. Syst. Signal Pr., 26, 181-189. https://doi.org/10.1016/j.ymssp.2011.07.017
  20. Lu, C., Ding, P. and Chen, Z. (2011), "Time-frequency analysis of acoustic emission signals generated by tension damage in CFRP", Procedia Eng., 23, 210-215. https://doi.org/10.1016/j.proeng.2011.11.2491
  21. Momoki, S., Chai, H., Aggelis, D.G., Hirama, A. and Shiotani, T. (2009), "Acoustic emission for characterizing behavior of composite concrete elements under flexure", J. Acoust. Emission, 27, 186-193.
  22. Muralidhara, S., Raghu Prasad, B.K., Eskandari, H. and Karihaloo, B.L. (2010), "Fracture process zone size and true fracture energy of concrete using acoustic emission", Constr. Build Mater., 24, 479-486. https://doi.org/10.1016/j.conbuildmat.2009.10.014
  23. Banjara, N.K. and Ramanjaneyulu, K. (2018), "Experimental investigations and numerical simulations on the flexural fatigue behavior of plain and fiber-reinforced concrete", J. Mater. Civil Eng. - ASCE, 30(8), 04018151. (DOI:10.1061/(ASCE)MT.1943-5533.0002351)
  24. Pai, P.F. and Palazotto, A.N. (2008), "HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems", Int. J. Mech. Sci., 50(12), 1619-1635. https://doi.org/10.1016/j.ijmecsci.2008.10.001
  25. Rilem, T.C.S. (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
  26. Sain, T. and Kishen, J.M.C. (2007), "Prediction of fatigue strength in plain and reinforced concrete beams", ACI Struct. J., 104(5), 621-628.
  27. Saliba, J., Loukili, A., Regoin, J. P., Gregoire, D., Verdon, L. and Pijaudier-Cabot, G. (2015). "Experimental analysis of crack evolution in concrete by the acoustic emission technique", Frattura ed Integrita Strutturale, 34, 300-308.
  28. Soulioti, D., Barkoula, N.M., Paipetis, A., Matikas, T.E., Shiotani, T. and Aggelis, D.G. (2009), "Acoustic emission behavior of steel fibre reinforced concrete under bending", Constr. Build. Mater., 23, 3532-3536. https://doi.org/10.1016/j.conbuildmat.2009.06.042
  29. Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F. and McNeill, S. R. (1983), "Determination of displacements using an improved digital correlation method", Image Vision Comput., 1, 133-139. https://doi.org/10.1016/0262-8856(83)90064-1
  30. Vidya Sagar, R., Raghu Prasad, B.K. and Sharma, R. (2012), "Evaluation of damage in reinforced concrete bridge beams using acoustic emission technique", Nondestruct. Test. Evalu., 27(2), 95-108. https://doi.org/10.1080/10589759.2011.610452
  31. Yoo, D.Y., Banthia, N. and Yoon, Y.S. (2016), "Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete", Cement Concrete Compos., 74, 71-87. https://doi.org/10.1016/j.cemconcomp.2016.09.005
  32. Yoon, D., Weiss, W. and Shah, S. (2000), "Assessing damage in corroded reinforced concrete using acoustic emission", J. Eng. Mech. - ASCE, 126(3), 273-283. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(273)
  33. Zaki, S.I., Ragab, K.S. and Eisa, A.S. (2013), "Flexural behaviour of steel fibers reinforced high strength self-compacting concrete slabs", Int. J. Eng. Inventions, 2(5), 1-11.