DOI QR코드

DOI QR Code

Nonlinear behavior of fiber reinforced cracked composite beams

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
  • 투고 : 2019.01.02
  • 심사 : 2019.02.14
  • 발행 : 2019.02.25

초록

This paper presents geometrically nonlinear behavior of cracked fiber reinforced composite beams by using finite element method with and the first shear beam theory. Total Lagrangian approach is used in the nonlinear kinematic relations. The crack model is considered as the rotational spring which separate into two parts of beams. In the nonlinear solution, the Newton-Raphson is used with incremental displacement. The effects of fibre orientation angles, the volume fraction, the crack depth and locations of the cracks on the geometrically nonlinear deflections of fiber reinforced composite are examined and discussed in numerical results. Also, the difference between geometrically linear and nonlinear solutions for the cracked fiber reinforced composite beams.

키워드

참고문헌

  1. Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stabil. Dyn., 15(4), 1450065.
  2. Akbas, S.D. (2015b), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., Int. J., 54(3), 433-451. https://doi.org/10.12989/sem.2015.54.3.433
  3. Akbas, S.D. (2018a), "Nonlinear Thermal Displacements of Laminated Composite Beams", Coupl. Syst. Mech., Int. J., 7(6), 691-705.
  4. Akbas, S.D. (2018b), "Thermal Post-Buckling Analysis of a Laminated Composite Beam", Struct. Eng. Mech., Int. J., 67(4), 337-346.
  5. Akbas, S.D. (2018c), "Large Deflection Analysis of a Fiber Reinforced Composite Beam", Steel Compos. Struct., Int. J., 27(5), 567-576.
  6. Akbas, S.D. (2018d), "Geometrically Nonlinear Analysis of a Laminated Composite Beam", Struct. Eng. Mech., Int. J., 66(1), 27-36.
  7. Akbas, S.D. (2018e), "Post-Buckling Responses of a Laminated Composite Beam , Steel Compos. Struct., Int. J., 26(6), 733-743.
  8. Akgoz, B. and Civalek, O . (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  9. Bayat, R., Jafari, A.A. and Rahmani, O. (2015), "Analytical solution for free vibration of laminated curved beam with magnetostrictive layers", Int. J. Appl. Mech., 7(3), 1550050.
  10. Benselama, K., El Meiche, N., Bedia, E.A.A. and Tounsi, A. (2015), "Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory", Struct. Eng. Mech., Int. J., 55(1), 47-64. https://doi.org/10.12989/sem.2015.55.1.047
  11. Borneman, S.R., Hashemi, S.M. and Alighanbari, H. (2009), "Vibration Analysis of Cracked Stepped Laminated Composite Beams", Int. J. Vehicle Struct. Syst., 1(1), p.16.
  12. Chen, W.J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83, 431-444. https://doi.org/10.1007/s00419-012-0689-2
  13. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
  14. Daneshmehr, A.R., Nateghi, A. and Inman, D.J. (2013), "Free vibration analysis of cracked composite beams subjected to coupled bending-torsion loads based on a first order shear deformation theory", Appl. Math. Model., 37(24), 10074-10091. https://doi.org/10.1016/j.apm.2013.05.062
  15. Demir, C., Mercan K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B, 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031
  16. Ebrahimi, F. and Hosseini, S.H.S. (2017), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Eur. Phys. J. Plus, 132(4), 172. https://doi.org/10.1140/epjp/i2017-11400-6
  17. Fan, Y. and Wang, H. (2017), "The effects of matrix cracks on the nonlinear vibration characteristics of shear deformable laminated beams containing carbon nanotube reinforced composite layers", Int. J. Mech. Sci., 124, 216-228. https://doi.org/10.1016/j.ijmecsci.2017.03.016
  18. Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
  19. Farokhi, H. and Ghayesh, M.H. (2015a), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
  20. Farokhi, H. and Ghayesh, M.H. (2015b), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
  21. Farokhi, H. and Ghayesh, M.H. (2018a), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci. Numer. Simul., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033
  22. Farokhi, H. and Ghayesh, M.H. (2018b), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017
  23. Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
  24. Ghayesh, M.H. and Farokhi, H. (2015), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004
  25. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013a), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006
  26. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013b), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
  27. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013c), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
  28. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014
  29. Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
  30. Ghoneam, S.M. (1995), "Dynamic analysis of open cracked laminated composite beams", Compos. Struct., 32(1-4), 3-11. https://doi.org/10.1016/0263-8223(95)00023-2
  31. Jena, P.C., Parhi, D.R. and Pohit, G. (2016), "Dynamic Study of Composite Cracked Beam by Changing the Angle of Bidirectional Fibres", Iran. J. Sci. Technol. Transactions A: Sci., 40(1), 27-37. https://doi.org/10.1007/s40995-016-0006-y
  32. Karaagac, C., Ozturk, H. and Sabuncu, M. (2013), "Effects of an edge crack on the free vibration and lateral buckling of a cantilever laminated composite slender beam", J. Vib. Control, 19(16), 2506-2522. https://doi.org/10.1177/1077546312458307
  33. Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. https://doi.org/10.1016/j.compscitech.2003.11.002
  34. Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., Int. J., 35(6), 677-697. https://doi.org/10.12989/sem.2010.35.6.677
  35. Krawczuk, M. and Ostachowicz, W.M. (1995), "Modelling and vibration analysis of a cantilever composite beam with a transverse open crack", J. Sound Vib., 183(1), 69-89. https://doi.org/10.1006/jsvi.1995.0239
  36. Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Modal analysis of cracked, unidirectional composite beam", Compos. Part B: Eng., 28(5-6), 641-650. https://doi.org/10.1016/S1359-8368(97)82238-X
  37. Lal, A., Mulani, S.B. and Kapania, R.K. (2017), "Stochastic Fracture Response and Crack Growth Analysis of Laminated Composite Edge Crack Beams Using Extended Finite Element Method", Int. J. Appl. Mech., 9(4), 1750061. https://doi.org/10.1142/S1758825117500612
  38. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
  39. Na, W.J. and Reddy, J.N. (2010), "Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams using The Layer Wise Theory", J. Solid Mech., 2(1), 1-18.
  40. Nikpur, K. and Dimarogonas, A. (1988), "Local compliance of composite cracked bodies", Compos. Sci. Technol., 32(3), 209-223. https://doi.org/10.1016/0266-3538(88)90021-8
  41. Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  42. Shi, Y.B. and Hull, D. (1992), "Fracture of delaminated unidirectional composite beams", J. Compos. Mater., 26(15), 2172-2195. https://doi.org/10.1177/002199839202601501
  43. Sun, H. and Zhou, L. (2012), "Analysis of damage characteristics for cracked composite structures using spectral element method", J. Vibroeng., 14(1), 430-439.
  44. Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Production Incorporated and Del Research Corporation.
  45. Toya, M., Aritomi, M. and Chosa, A. (1997), "Energy release rates for an interface crack embedded in a laminated beam subjected to three-point bending", J. Appl. Mech., 64(2), 375-382. https://doi.org/10.1115/1.2787318
  46. Vinson, J.R. and Sierakowski, R.L. (2002), "Behaviour of structures composed of composite materials", Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands.

피인용 문헌

  1. Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.671
  2. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  3. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
  4. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes vol.11, pp.3, 2019, https://doi.org/10.3390/nano11030571
  5. Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method vol.9, pp.9, 2021, https://doi.org/10.3390/math9091048
  6. Free vibration of multi-cracked beams vol.79, pp.4, 2019, https://doi.org/10.12989/sem.2021.79.4.441