과제정보
연구 과제 주관 기관 : Natural Science Foundation of Jiangsu Province, National Natural Science Foundation of China, Central Universities
참고문헌
- AISC 360-16 (2016), Specification for structural steel buildings; American Institute of Steel Construction, Chicago, IL, USA.
- Akiyama, H. and Sekimoto, H. (1991), "A compression and shear loading tests of concrete filled steel bearing wall", Transaction of 11th Structural Mechanics in Reactor Technology (SMiRT-11), Tokyo, Japan, August.
- Choi, B.J. and Han, H.S. (2009), "An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading", Steel Compos. Struct., Int. J., 9(6), 519-534. https://doi.org/10.12989/scs.2009.9.6.519
- Choi, B.J., Kang, C.K. and Park, H.Y. (2014), "Strength and behavior of steel plate-concrete wall structures using ordinary and eco-oriented cement concrete under axial compression", Thin Wall. Struct., 84, 313-324. https://doi.org/10.1016/j.tws.2014.07.008
- EN 1994-1-1:2004 (2004), Eurocode 4: Design of composite steeel and concrete structures-Part 1-1: General rules and rules for buildings; British Standards Institution, London, UK.
- Eom, T.S., Park, H.G., Lee, C.H., Kim, J.H. and Chang, I.H. (2009), "Behavior of double skin composite wall subjected to in-plane cyclic loading", J. Struct. Eng., 135(10), 1239-1249. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000057
- GB50010-2010 (2010), Code for design of concrete structures; China Architecture & Building Press, Beijing, China.
- GB50017-2017 (2017), Standard for classification of steel structures; China Architecture & Building Press, Beijing, China.
- Gheidi, A., Mirtaheri, M., Zandi, A.P. and Alanjari, P. (2011), "Effect of filler material on local and global behaviour of buckling-restrained braces", Struct. Des. Tall Spec. Build., 20(6), 700-710. https://doi.org/10.1002/tal.555
- Hilo, S.J., Badaruzzaman, W.H.W., Osman, S.A. and Al-Zand, A.W. (2016), "Structural behavior of composite wall systems strengthened with embedded cold-formed steel tube", Thin Wall. Struct., 98, 607-616. https://doi.org/10.1016/j.tws.2015.10.028
- Huang, Z.Y. and Liew, J.Y. (2016), "Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors", J. Constr. Steel Res., 124, 142-162. https://doi.org/10.1016/j.jcsr.2016.05.001
- Huang, S.T., Huang, Y.S., He, A., Tang, X.L., Chen, Q.J., Liu, X.P. and Cai, J. (2018), "Experimental study on seismic behaviour of an innovative composite shear wall", J. Constr. Steel Res., 148, 165-179. https://doi.org/10.1016/j.jcsr.2018.05.003
- JGJ/T 380-2015 (2015), Technical specification for steel plate shear walls; China Architecture & Building Press, Beijing, China.
- Ji, X.D., Cheng, X.W., Jia, X.F. and Varma, A.H. (2017), "Cyclic in-plane shear behavior of double-skin composite walls in highrise buildings", J. Struct. Eng., 143(6), 04017025.
- Kanchi, M. (1996), "Experimental study on a concrete filled steel structure Part 2 Compressive tests (1). Summary of Technical Papers of Annual Meeting", Architectural Institute of Japan, 1996, 1071-1072.
- Korkmaz, H.H. and Ecemis, A.S. (2017), "Seismic upgrading of reinforced concrete frames with steel plate shear walls", Earthq. Struct., Int. J., 13(5), 473-484.
- Liao, J.J. and Ma, G.W. (2018), "Energy absorption of the ring stiffened tubes and the application in blast wall design", Struct. Eng. Mech., Int. J., 66(6), 713-727.
- Luo, Y.F., Guo, X.N., Li, J., Xiong, Z., Meng, L., Dong, N.C. and Zhang, J. (2015), "Experimental research on seismic behaviour of the concrete-filled double-steel-plate composite wall", Adv. Struct. Eng., 18(11), 1845-1858. https://doi.org/10.1260/1369-4332.18.11.1845
- Mirtaheri, M. and Zoghi, M.A. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., Int. J., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357
- Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., Int. J., 65(4), 401-408.
- Nguyen, N.H. and Whittaker, A.S. (2017), "Numerical modelling of steel-plate concrete composite shear walls", Eng. Struct., 150, 1-11. https://doi.org/10.1016/j.engstruct.2017.06.030
- Nie, J.G., Ma, X.W., Tao, M.X., Fan, J.S. and Bu, F.M. (2014), "Effective stiffness of composite shear wall with double plates and filled concrete", J. Constr. Steel Res., 99, 140-148. https://doi.org/10.1016/j.jcsr.2014.04.001
- Qin, Y., Chen, Z.H. and Rong, B. (2015a), "Component-based mechanical models for concrete-filled RHS connections with diaphragms under bending moment", Adv. Struct. Eng., 18(8), 1241-1255. https://doi.org/10.1260/1369-4332.18.8.1241
- Qin, Y., Chen, Z.H. and Rong, B. (2015b), "Modeling of CFRT through-diaphragm connections with H-beams subjected to axial load", J. Contr. Steel Res., 114, 146-156. https://doi.org/10.1016/j.jcsr.2015.04.015
- Qin, Y., Chen, Z.H., Bai, J.J. and Li, Z.L. (2016), "Test of extended thick-walled through-diaphragm connection to thickwalled CFT column", Steel Compos. Struct., Int. J., 20(1), 1-20. https://doi.org/10.12989/scs.2016.20.1.001
- Qin, Y., Lu, J.Y. and Cao, S. (2017a), "Theoretical study on local buckling of steel plate in concrete filled tube column under axial compression", ISIJ Int., 57(9), 1645-1651. https://doi.org/10.2355/isijinternational.ISIJINT-2016-755
- Qin, Y., Shu, G.P., Fan, S.G., Lu, J.Y., Cao, S. and Han, J.H. (2017b), "Strength of double skin steel-concrete composite walls", Int. J. Steel Struct., 17(2), 535-541. https://doi.org/10.1007/s13296-017-6013-9
- Qin, Y., Zhang, J.C., Shi, P., Chen, Y.F., Xu, Y.H. and Shi, Z.Z. (2018a), "Behavior of improved through-diaphragm connection to square tubular column under tensile loading", Struct. Eng. Mech., Int. J., 68(4), 475-483.
- Qin, Y., Shu, G.P., Du, E.F. and Lu, R.H. (2018b), "Buckling analysis of elastically-restrained steel plates under eccentric compression", Steel Compos. Struct., Int. J., 29(3), 379-389.
- Qin, Y., Du, E.F., Li, Y.W. and Zhang, J.C. (2018c), "Local buckling of steel plates in composite structures under combined bending and compression", ISIJ Int., 58(11), 2133-2141. https://doi.org/10.2355/isijinternational.ISIJINT-2018-202
- Sakr, M.A., El-Khoriby, S.R., Khalifa, T.M. and Nagib, M.T. (2017), "Modeling of RC shear walls strengthened by FRP composites", Struct. Eng. Mech., Int. J., 61(3), 407-417. https://doi.org/10.12989/sem.2017.61.3.407
- Shekastehband, B., Mohammadbagheri, S. and Taromi, A. (2018), "Seismic behavior of stiffened concrete-filled double-skin tubular columns", Steel Compos. Struct., Int. J., 27(5), 577-598.
- Usami, S., Akiyama, H., Narikawa, M., Hara, K., Takeuchi, M. and Sasaki, N. (1995), "Study on a concrete filled steel structure for nuclear plants (part 2). Compressive loading tests on wall members", Transaction of 13th Structural Mechanics in Reactor Technology (SMiRT-13), Porto Alegre, Brazil, August.
- Xiong, Q.Q., Chen, Z.H., Zhang, W., Du, Y.S., Zhou, T. and Kang, J.F. (2017), "Compressive behaviour and design of L-shaped columns fabricated using concrete-filled steel tubes", Eng. Struct., 152, 758-770. https://doi.org/10.1016/j.engstruct.2017.09.046
- Yan, J.B., Wang, Z., Wang, T. and Wang, X.T. (2018), "Shear and tensile behaviors of headed stud connectors in double skin composite shear wall", Steel Compos. Struct., Int. J., 26(6), 759-769.
- Yousefi, M. and Ghalehnovi, M. (2018), "Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors", Steel Compos. Struct., Int. J., 27(1), 123-133.
- Zoghi, M.A. and Mirtaheri, M. (2016), "Progressive collapse analysis of steel building considering effects of infill panels", Struct. Eng. Mech., Int. J., 59(1), 59-82. https://doi.org/10.12989/sem.2016.59.1.059
피인용 문헌
- Behavior of L-shaped double-skin composite walls under compression and biaxial bending vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.405
- Optimum location of second outrigger in RC core walls subjected to NF earthquakes vol.38, pp.6, 2019, https://doi.org/10.12989/scs.2021.38.6.671