DOI QR코드

DOI QR Code

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M. (Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan) ;
  • Kharratzadeh, M. (Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan)
  • 투고 : 2018.01.07
  • 심사 : 2019.02.10
  • 발행 : 2019.02.25

초록

Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.

키워드

참고문헌

  1. Aktas, M. and Balcioglu, H. (2014), "Buckling behavior of pultruded composite beams with circular cutouts", Steel Compos. Struct., Int. J., 17(4), 359-370. https://doi.org/10.12989/scs.2014.17.4.359
  2. Arbelo, M.A., Degenhardt, R., Castro, S.G. and Zimmermann, R. (2014), "Numerical characterization of imperfection sensitive composite structures", Compos. Struct., 108, 295-303. https://doi.org/10.1016/j.compstruct.2013.09.041
  3. Arbocz, J. and Starnes, Jr., J. (2002), "Future directions and challenges in shell stability analysis", Thin-Wall. Struct., 40(9), 729-754. https://doi.org/10.1016/S0263-8231(02)00024-1
  4. Moniri Bidgoli, A.M. and Heidari-Rarani, M. (2016), "Axial buckling response of fiber metal laminate circular cylindrical shells", Struct. Eng. Mech., Int. J., 57(1), 45-63. https://doi.org/10.12989/sem.2016.57.1.045
  5. Bisagni, C. (2000), "Numerical analysis and experimental correlation of composite shell buckling and post-buckling", Compos. Part B: Eng., 31(8), 655-667. https://doi.org/10.1016/S1359-8368(00)00031-7
  6. Castro, S.G., Zimmermann, R., Arbelo, M.A. and Degenhardt, R. (2013), "Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors", Thin-Wall. Struct., 72, 76-87. https://doi.org/10.1016/j.tws.2013.06.016
  7. Castro, S.G., Zimmermann, R., Arbelo, M.A., Khakimova, R., Hilburger, M.W. and Degenhardt, R. (2014), "Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells", Thin-Wall. Struct., 74, 118-132. https://doi.org/10.1016/j.tws.2013.08.011
  8. Degenhardt, R. (2011), "New robust design guideline for Imperfection sensitive composite launcher Structures", The International Conference of the European Aerospace Societies.
  9. Eglitis, E., Kalnins, K. and Ozolins, O. (2009), "Experimental and numerical study on buckling of axially compressed composite cylinders", Construct. Sci., 10.
  10. Esslinger, M. (1969), Hochgeschwindigkeitsaufnahmen vom Beulvorgang dunnwandiger, axialbelasteter Zylinder, Deutsche Forschungs-und Versuchsanst. fur Luft-und Raumfahrt
  11. Huhne, C., Rolfes, R. and Tessmer, J. (2005), "A new approach for robust design of composite cylindrical shells under axial compression", Spacecraft Struct. Mater. Mech. Testing.
  12. Huhne, C., Rolfes, R., Breitbach, E. and Tessmer, J. (2008), "Robust design of composite cylindrical shells under axial compression-simulation and validation", Thin-Wall. Struct., 46(7), 947-962. https://doi.org/10.1016/j.tws.2008.01.043
  13. Ismail, M.S., Baharudin, B., Talib, Z. and Yahya, S.A. (2014), "Improvement of cylinder buckling knockdown factor through imperfection sensitivity", Adv. Mater. Res.
  14. Ismail, M., Purbolaksono, J., Andriyana, A., Tan, C., Muhammad, N. and Liew, H. (2015), "The use of initial imperfection approach in design process and buckling failure evaluation of axially compressed composite cylindrical shells", Eng. Fail. Anal., 51, 20-28. https://doi.org/10.1016/j.engfailanal.2015.02.017
  15. Khakimova, R., Castro, S.G., Wilckens, D., Rohwer, K. and Degenhardt, R. (2017), "Buckling of axially compressed CFRP cylinders with and without additional lateral load: Experimental and numerical investigation", Thin-Wall. Struct., 119, 178-189. https://doi.org/10.1016/j.tws.2017.06.002
  16. Khayat, M., Poorveis, D. and Moradi, Sh. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
  17. Kriegesmann, B., Jansen, E.L. and Rolfes, R. (2016), "Design of cylindrical shells using the single perturbation load approach-potentials and application limits", Thin-Wall. Struct., 108, 369-380. https://doi.org/10.1016/j.tws.2016.09.005
  18. Ma, Y., Cheng, X., Wang, Z., Guo, X., Zhang, J. and Xu, Y. (2018), "Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening", Steel Compos. Struct., Int. J., 27(5), 555-566.
  19. Orifici, A.C. and Bisagni, C. (2013), "Perturbation-based imperfection analysis for composite cylindrical shells buckling in compression", Compos. Struct., 106, 520-528. https://doi.org/10.1016/j.compstruct.2013.06.028
  20. Peterson, J., Seide, P. and Weingarten, V. (1968), "Buckling of thin-walled circular cylinders". NASA SP-8007, NASA Space Vehicle Design Criteria - Structures.
  21. Priyadarsini, R., Kalyanaraman, V. and Srinivasan, S. (2012), "Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression", Int. J. Struct. Stabil. Dyn., 12(4), 1250028.
  22. Sosa, E.M., Godoy, L.A. and Croll, J.G. (2006), "Computation of lower-bound elastic buckling loads using general-purpose finite element codes", Comput. Struct., 84(29), 1934-1945. https://doi.org/10.1016/j.compstruc.2006.08.016
  23. Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., Int. J., 29(4), 557-567.
  24. Taheri-Behrooz, F., Omidi, M. and Shokrieh, M. (2017), "Experimental and numerical investigation of buckling behavior of composite cylinders with cutout", Thin-Wall. Struct., 116, 136-144. https://doi.org/10.1016/j.tws.2017.03.009
  25. Wagner, H., Huhne, C. and Niemann, S. (2017a), "Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells-Development and Validation", Compos. Struct., 173, 281-303. https://doi.org/10.1016/j.compstruct.2017.02.031
  26. Wagner, H., Huhne, C., Niemann, S. and Khakimova, R. (2017b), "Robust design criterion for axially loaded cylindrical shells-Simulation and Validation", Thin-Wall. Struct., 115, 154-162. https://doi.org/10.1016/j.tws.2016.12.017
  27. Wang, B., Du, K., Hao, P., Tian, K., Chao, Y.J., Jiang L., Xu, S. and Zhang, X. (2019a), "Experimental validation of cylindrical shells under axial compression for improved knockdown factors", Int. J. Solids Struct., 160.
  28. Wang, B., Ma, X., Hao, P., Sun, Y., Tian, K., Li, G., Zhang, K., Jiang, L. and Guo, J. (2019b), "Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections", Compos. Part B: Eng., 163, 314-323. https://doi.org/10.1016/j.compositesb.2018.11.049
  29. Wullschleger, L. and Meyer-Piening, H.-R. (2002), "Buckling of geometrically imperfect cylindrical shells-definition of a buckling load", Int. J. Non-Linear Mech., 37(4), 645-657. https://doi.org/10.1016/S0020-7462(01)00089-0
  30. Yamada, S., Yano, K. and Croll, J. (2001), "Nonlinear buckling behaviour of fibre reinforced polymeric cylinders under compression", Proceedings of IASS-2001, Hosei University, Nagoya, Japan.

피인용 문헌

  1. Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.227
  2. A semi-analytical study on effects of geometric imperfection and curved fiber paths on nonlinear response of compression-loaded laminates vol.40, pp.4, 2019, https://doi.org/10.12989/scs.2021.40.4.621