References
- Aktas, M. and Balcioglu, H. (2014), "Buckling behavior of pultruded composite beams with circular cutouts", Steel Compos. Struct., Int. J., 17(4), 359-370. https://doi.org/10.12989/scs.2014.17.4.359
- Arbelo, M.A., Degenhardt, R., Castro, S.G. and Zimmermann, R. (2014), "Numerical characterization of imperfection sensitive composite structures", Compos. Struct., 108, 295-303. https://doi.org/10.1016/j.compstruct.2013.09.041
- Arbocz, J. and Starnes, Jr., J. (2002), "Future directions and challenges in shell stability analysis", Thin-Wall. Struct., 40(9), 729-754. https://doi.org/10.1016/S0263-8231(02)00024-1
- Moniri Bidgoli, A.M. and Heidari-Rarani, M. (2016), "Axial buckling response of fiber metal laminate circular cylindrical shells", Struct. Eng. Mech., Int. J., 57(1), 45-63. https://doi.org/10.12989/sem.2016.57.1.045
- Bisagni, C. (2000), "Numerical analysis and experimental correlation of composite shell buckling and post-buckling", Compos. Part B: Eng., 31(8), 655-667. https://doi.org/10.1016/S1359-8368(00)00031-7
- Castro, S.G., Zimmermann, R., Arbelo, M.A. and Degenhardt, R. (2013), "Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors", Thin-Wall. Struct., 72, 76-87. https://doi.org/10.1016/j.tws.2013.06.016
- Castro, S.G., Zimmermann, R., Arbelo, M.A., Khakimova, R., Hilburger, M.W. and Degenhardt, R. (2014), "Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells", Thin-Wall. Struct., 74, 118-132. https://doi.org/10.1016/j.tws.2013.08.011
- Degenhardt, R. (2011), "New robust design guideline for Imperfection sensitive composite launcher Structures", The International Conference of the European Aerospace Societies.
- Eglitis, E., Kalnins, K. and Ozolins, O. (2009), "Experimental and numerical study on buckling of axially compressed composite cylinders", Construct. Sci., 10.
- Esslinger, M. (1969), Hochgeschwindigkeitsaufnahmen vom Beulvorgang dunnwandiger, axialbelasteter Zylinder, Deutsche Forschungs-und Versuchsanst. fur Luft-und Raumfahrt
- Huhne, C., Rolfes, R. and Tessmer, J. (2005), "A new approach for robust design of composite cylindrical shells under axial compression", Spacecraft Struct. Mater. Mech. Testing.
- Huhne, C., Rolfes, R., Breitbach, E. and Tessmer, J. (2008), "Robust design of composite cylindrical shells under axial compression-simulation and validation", Thin-Wall. Struct., 46(7), 947-962. https://doi.org/10.1016/j.tws.2008.01.043
- Ismail, M.S., Baharudin, B., Talib, Z. and Yahya, S.A. (2014), "Improvement of cylinder buckling knockdown factor through imperfection sensitivity", Adv. Mater. Res.
- Ismail, M., Purbolaksono, J., Andriyana, A., Tan, C., Muhammad, N. and Liew, H. (2015), "The use of initial imperfection approach in design process and buckling failure evaluation of axially compressed composite cylindrical shells", Eng. Fail. Anal., 51, 20-28. https://doi.org/10.1016/j.engfailanal.2015.02.017
- Khakimova, R., Castro, S.G., Wilckens, D., Rohwer, K. and Degenhardt, R. (2017), "Buckling of axially compressed CFRP cylinders with and without additional lateral load: Experimental and numerical investigation", Thin-Wall. Struct., 119, 178-189. https://doi.org/10.1016/j.tws.2017.06.002
- Khayat, M., Poorveis, D. and Moradi, Sh. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
- Kriegesmann, B., Jansen, E.L. and Rolfes, R. (2016), "Design of cylindrical shells using the single perturbation load approach-potentials and application limits", Thin-Wall. Struct., 108, 369-380. https://doi.org/10.1016/j.tws.2016.09.005
- Ma, Y., Cheng, X., Wang, Z., Guo, X., Zhang, J. and Xu, Y. (2018), "Buckling and post-buckling behaviors of 1/3 composite cylindrical shell with an opening", Steel Compos. Struct., Int. J., 27(5), 555-566.
- Orifici, A.C. and Bisagni, C. (2013), "Perturbation-based imperfection analysis for composite cylindrical shells buckling in compression", Compos. Struct., 106, 520-528. https://doi.org/10.1016/j.compstruct.2013.06.028
- Peterson, J., Seide, P. and Weingarten, V. (1968), "Buckling of thin-walled circular cylinders". NASA SP-8007, NASA Space Vehicle Design Criteria - Structures.
- Priyadarsini, R., Kalyanaraman, V. and Srinivasan, S. (2012), "Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression", Int. J. Struct. Stabil. Dyn., 12(4), 1250028.
- Sosa, E.M., Godoy, L.A. and Croll, J.G. (2006), "Computation of lower-bound elastic buckling loads using general-purpose finite element codes", Comput. Struct., 84(29), 1934-1945. https://doi.org/10.1016/j.compstruc.2006.08.016
- Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., Int. J., 29(4), 557-567.
- Taheri-Behrooz, F., Omidi, M. and Shokrieh, M. (2017), "Experimental and numerical investigation of buckling behavior of composite cylinders with cutout", Thin-Wall. Struct., 116, 136-144. https://doi.org/10.1016/j.tws.2017.03.009
- Wagner, H., Huhne, C. and Niemann, S. (2017a), "Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells-Development and Validation", Compos. Struct., 173, 281-303. https://doi.org/10.1016/j.compstruct.2017.02.031
- Wagner, H., Huhne, C., Niemann, S. and Khakimova, R. (2017b), "Robust design criterion for axially loaded cylindrical shells-Simulation and Validation", Thin-Wall. Struct., 115, 154-162. https://doi.org/10.1016/j.tws.2016.12.017
- Wang, B., Du, K., Hao, P., Tian, K., Chao, Y.J., Jiang L., Xu, S. and Zhang, X. (2019a), "Experimental validation of cylindrical shells under axial compression for improved knockdown factors", Int. J. Solids Struct., 160.
- Wang, B., Ma, X., Hao, P., Sun, Y., Tian, K., Li, G., Zhang, K., Jiang, L. and Guo, J. (2019b), "Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections", Compos. Part B: Eng., 163, 314-323. https://doi.org/10.1016/j.compositesb.2018.11.049
- Wullschleger, L. and Meyer-Piening, H.-R. (2002), "Buckling of geometrically imperfect cylindrical shells-definition of a buckling load", Int. J. Non-Linear Mech., 37(4), 645-657. https://doi.org/10.1016/S0020-7462(01)00089-0
- Yamada, S., Yano, K. and Croll, J. (2001), "Nonlinear buckling behaviour of fibre reinforced polymeric cylinders under compression", Proceedings of IASS-2001, Hosei University, Nagoya, Japan.
Cited by
- Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.227
- A semi-analytical study on effects of geometric imperfection and curved fiber paths on nonlinear response of compression-loaded laminates vol.40, pp.4, 2019, https://doi.org/10.12989/scs.2021.40.4.621