References
- Akoz, A. and Kadioglu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct., 60(4), 643-651. https://doi.org/10.1016/0045-7949(95)00418-1
- Akoz, A. and O zutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", Int. J. Numer. Meth. Eng., 47(12), 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<1933::AID-NME860>3.0.CO;2-0
- Alshorbagy, A.E., Eltaher, M. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Bathe, K.J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe.
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Eratli, N. and Akoz, A.Y. (2002), "Free vibration analysis of Reissner plates by mixed finite element", Struct. Eng. Mech., 13(3), 277-298. https://doi.org/10.12989/sem.2002.13.3.277
- Filippi, M., Carrera, E. and Zenkour, A. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004
- Hadji, L., Daouadji, T.H., Meziane, M., Tlidji, Y. and Bedia, E.A.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315
- Hadji, L., Khelifa, Z. and El Abbes, A.B. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Modell., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Kahya, V. and Turan, M. (2017), "Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 109, 108-115. https://doi.org/10.1016/j.compositesb.2016.10.039
- Kim, J. and Reddy, J. (2013), "Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stressbased third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007
- Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011
- Li, S.R., Cao, D.F. and Wan, Z.Q. (2013), "Bending solutions of FGM Timoshenko beams from those of the homogenous Euler-Bernoulli beams", Appl. Math. Modell., 37(10-11), 7077-7085. https://doi.org/10.1016/j.apm.2013.02.047
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vibr., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, X.F., Wang, B.L. and Han, J.C. (2010), "A higher-order theory for static and dynamic analyses of functionally graded beams", Arch. Appl. Mech., 80(10), 1197-1212. https://doi.org/10.1007/s00419-010-0435-6
- Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, E.A.A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19(8), 641-652. https://doi.org/10.1080/15376494.2011.581409
- Mohanty, S., Dash, R. and Rout, T. (2011), "Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation", Nucl. Eng. Des., 241(8), 2698-2715. https://doi.org/10.1016/j.nucengdes.2011.05.040
- Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V. and Kugler, S. (2013), "Modal analysis of the FGM beams with effect of the shear correction function", Compos. Part B: Eng., 45(1), 1575-1582. https://doi.org/10.1016/j.compositesb.2012.09.084
- Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011
- Nguyen, T.T., Kim, N.I. and Lee, J. (2016), "Free vibration of thin-walled functionally graded open-section beams", Compos. Part B: Eng., 95, 105-116. https://doi.org/10.1016/j.compositesb.2016.03.057
- Oden, J.T. and Reddy, J.N. (1976), "On mixed finite element approximations", SIAM J. Numer. Analy., 13(3), 393-404. https://doi.org/10.1137/0713035
- Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043
- Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", Int. J. Struct. Stab. Dyn., 13(2), 1250056.
- Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013
- Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons.
- Sankar, B. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B: Eng., 42(4), 801-808. https://doi.org/10.1016/j.compositesb.2011.01.017
- Sina, S., Navazi, H. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Vo, T.P., Thai, H.T., Nguyen. T.K. and Inam, F. (2014), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccan., 49(1), 155-168. https://doi.org/10.1007/s11012-013-9780-1
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Modell., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
- Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C. and Taylor, R.L. (1977), The Finite Element Method, McGraw-Hill, London, U.K.
Cited by
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.033
- Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state vol.77, pp.1, 2021, https://doi.org/10.12989/sem.2021.77.1.137
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2019, https://doi.org/10.12989/scs.2021.39.1.095
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2019, https://doi.org/10.12989/scs.2021.39.2.149
- Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
- Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2019, https://doi.org/10.1007/s00419-021-01973-7
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2019, https://doi.org/10.12989/scs.2021.40.2.307
- The treatment of constraints due to standard boundary conditions in the context of the mixed Web-spline finite element method vol.38, pp.7, 2021, https://doi.org/10.1108/ec-02-2020-0078
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
- Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.203