Acknowledgement
Supported by : National Research Foundation (NRF), Ministry of Land, Infrastructure and Transport (MOLIT) of South Korea
References
- Amura, M and Meo, M. (2012), "Prediction of residual fatigue life using nonlinear ultrasound", Smart Mater. Struct., 21(4), 045001.
- Caizzone, S., DiGampaolo, E. and Marrocco, G. (2014), "Wireless crack monitoring by stationary phase measurements from coupled RFID tags", IEEE Trans. Antenn. Propagat., 62(12), 6412-6419. https://doi.org/10.1109/TAP.2014.2360553
- Cantrell, J.H. and Yost, W.T. (2001), "Nonlinear ultrasonic characterization of fatigue microstructures", Int. J. Fatig., 23, 487-490. https://doi.org/10.1016/S0142-1123(01)00162-1
- Chan, T.H., Li, Z. and Ko, J.M. (2004), "Evaluation of typhoon induced fatigue damage using health monitoring data for the Tsing Ma Bridge", Struct. Eng. Mech., 17(5), 655-670. https://doi.org/10.12989/sem.2004.17.5.655
- Chen, H.L.R. and Choi, J.H. (2006), "Fatigue crack growth and remaining life estimation of AVLB components", Struct. Eng. Mech., 23(6), 651-674. https://doi.org/10.12989/sem.2006.23.6.651
- Chen, J., Yuan, S., Qiu L., Cai, J. and Yang, W. (2016), "Research on a lamb wave and particle filter-based on-line crack propagation prognosis method", Sens., 16(3), 320. https://doi.org/10.3390/s16030320
- Chintalapudi, K., Fu, T., Paek, J., Kothari, N., Rangwala, S., Cafferey, J. and Masri, S. (2006), "Monitoring civil structures with a wireless sensor network", IEEE Intern. Comput., 10(2), 26-34. https://doi.org/10.1109/MIC.2006.38
- De Lima, W. and Hamilton, M. (2003), "Finite-amplitude waves in isotropic elastic plates", J. Sound Vibr., 265(4), 819-839. https://doi.org/10.1016/S0022-460X(02)01260-9
- Duffour, P., Morbidini, M. and Cawley, P. (2006), "A study of the vibro-acoustic modulation technique for the detection of cracks in metals", J. Acoust. Soc. Am., 119(3), 1463-1475. https://doi.org/10.1121/1.2161429
- Fierro, G.P.M. and Meo, M. (2015), "Residual fatigue life estimation using a nonlinear ultrasound modulation method", Smart Mater. Struct., 24(2), 025040.
- Forrest, P.G. (2013), Fatigue of Metals, Elsevier.
- Gholizadeh, S., Leman, Z. and Baharudin, B. (2015), "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075. https://doi.org/10.12989/sem.2015.54.6.1075
- Grosse, C.U., Glaser, S.D. and Knuger, M. (2010), "Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring", Smart Struct. Syst., 6(3), 197-209. https://doi.org/10.12989/sss.2010.6.3.197
- Hamia, R., Cordier, C. and Dolabdjian, C. (2014), "Eddy-current non-destructive testing system for the determination of crack orientation", Ndt E Int., 61, 24-28. https://doi.org/10.1016/j.ndteint.2013.09.005
- Ihn, J.B. and Chang, F.K. (2004), "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics", Smart Mater. Struct., 13(3), 609. https://doi.org/10.1088/0964-1726/13/3/020
- Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation", Smart Struct. Syst., 6(5-6), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461
- Jhang, K.Y. (2009), "Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review", Int. J. Prec. Eng. Manufact., 10(1), 123-135. https://doi.org/10.1007/s12541-009-0019-y
- Kilic, G. (2014), "Wireless sensor network protocol comparison for bridge health assessment", Structu. Eng. Mech., 49(4), 509-521. https://doi.org/10.12989/sem.2014.49.4.509
- Kim, Y., Lim, H.J. and Sohn, H. (2018), "Nonlinear ultrasonic modulation based failure warning for aluminum plates subject to fatigue loading", Int. J. Fatig., 114, 130-137. https://doi.org/10.1016/j.ijfatigue.2018.05.014
- Knopp, J.S., Aldrin, J.C. and Jata, K.V. (2009), "Computational methods in eddy current crack detection at fastener sites in multi-layer structures", Nondestruct. Test. Evaluat., 24(1-2), 103-120. https://doi.org/10.1080/10589750802195519
- Kwon, S.D., Park, J. and Law, K. (2013), "Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations", Smart Mater. Struct., 22(5), 055007.
- Li, N., Sun, J., Jiao, J., Wu, B. and He, C. (2016), "Quantitative evaluation of micro-cracks using nonlinear ultrasonic modulation method", Ndt E Int., 79, 63-72. https://doi.org/10.1016/j.ndteint.2015.12.003
- Lim, H.J., Kim, Y., Koo, G., Yang, S., Sohn, H., Bae, I.H. and Jang, J.H. (2016), "Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition", Smart Mater. Struct., 25(9), 095055.
- Lim, H.J., Sohn, H. and Liu, P. (2014), "Binding conditions for nonlinear ultrasonic generation unifying wave propagation and vibration", Appl. Phys. Lett., 104(21), 214103.
- Liu, P., Lim, H.J., Yang, S., Sohn, H., Lee, C.H., Yi, Y. and Bae, I.H. (2017), "Development of a "stick-and-detect" wireless sensor node for fatigue crack detection", Structural Health Monitor., 16(2), 153-163. https://doi.org/10.1177/1475921716666532
- Liu, Y., He, C., Huang, C., Khan, M.K. and Wang, Q. (2014), "Very long life fatigue behaviors of 16Mn steel and welded joint", Struct. Eng. Mech., 52(5), 889-901. https://doi.org/10.12989/sem.2014.52.5.889
- Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer, E., Farrar, C.R., Sohn, H. and Wait, J.R. (2004), "Design and performance validation of a wireless sensing unit for structural monitoring applications", Struct. Eng. Mech., 17(3-4), 393-408. https://doi.org/10.12989/sem.2004.17.3_4.393
- Lynch, J.P., Wang, Y., Loh, K.J., Yi, J.H. and Yun, C.B. (2006), "Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensos", Smart Mater. Struct., 15(6), 1561. https://doi.org/10.1088/0964-1726/15/6/008
- Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R. and Anderson, J. (2002), "Wireless sensor networks for habitat monitoring", Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, Georgia, U.S.A., September.
- Marin, A., Kishore, R., Schaab, D.A., Vuckovic, D. and Priya, S. 2016), "Micro wind turbine for powering wireless sensor nodes", Energy Harvest. Syst., 3(2), 139-152. https://doi.org/10.1515/ehs-2013-0004
- McCullagh J, Galchev T, Peterson R, et al. (2014), "Long-term testing of a vibration harvesting system for the structural health monitoring of bridges", Sens. Actuat. A: Phys., 217, 139-150. https://doi.org/10.1016/j.sna.2014.07.003
- Mi, B., Michaels, J.E. and Michaels, T.E. (2006), "An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth", J. Acoust. Soc. Am., 119(1), 74-85. https://doi.org/10.1121/1.2139647
- Mix, P.E. (2005), Introduction to Nondestructive Testing: A Training Guide, John Wiley & Sons.
- Nair, A. and Cai, C. (2010), "Acoustic emission monitoring of bridges: Review and case studies", Eng. Struct., 32(6), 1704-1714. https://doi.org/10.1016/j.engstruct.2010.02.020
- Nallasivam, K., Talukdar, S. and Dutta, A. (2008), "Fatigue life prediction of horizontally curved thin walled box girder steel bridges", Struct. Eng. Mech., 28(4), 387-410. https://doi.org/10.12989/sem.2008.28.4.387
- Rabiei, M. and Modarres, M. (2013), "Quantitative methods for structural health management using in situ acoustic emission monitoring", Int. J. Fatig., 49, 81-89. https://doi.org/10.1016/j.ijfatigue.2012.12.001
- Roberts, T. and Talebzadeh, M. (2003), "Acoustic emission monitoring of fatigue crack propagation", J. Constr. Steel Res., 59(6), 695-712. https://doi.org/10.1016/S0143-974X(02)00064-0
- Rokhlin, S. and Kim, J.Y. (2003), "In situ ultrasonic monitoring of surface fatigue crack initiation and growth from surface cavity", Int. J. Fatig., 25(1), 41-49. https://doi.org/10.1016/S0142-1123(02)00055-5
- Ruiz-Carcel, C., Hernani-Ros, E., Cao, Y. and Mba, D. (2014), "Use of spectral kurtosis for improving signal to noise ratio of acoustic emission signal from defective bearings", J. Fail. Analy. Prevent., 14(3), 363-371. https://doi.org/10.1007/s11668-014-9805-7
- Sankararaman, S., Ling, Y. and Mahadevan, S. (2011), "Uncertainty quantification and model validation of fatigue crack growth prediction", Eng. Fract. Mech., 78, 1487-1504. https://doi.org/10.1016/j.engfracmech.2011.02.017
- Sazonov, E., Krishnamurthy, V. and Schilling, R. (2010), "Wireless intelligent sensor and actuator network-a scalable platform for time-synchronous applications of structural health monitoring", Struct. Health Monitor., 9, 465-476. https://doi.org/10.1177/1475921710370003
- Sohn, H., Lim, H.J., DeSimio, M.P., Brown, K. and Derriso, M. (2014), "Nonlinear ultrasonic wave modulation for online fatigue crack detection", J. Sound Vibr., 333(5), 1473-1484. https://doi.org/10.1016/j.jsv.2013.10.032
- Sohn, H., Lim, H.J., Kim, J.M., et al. (2016), "Self-sufficient and self-contained sensing for local monitoring of in-situ bridge structures", Proceedings of the 8th European Workshop on Structural Health Monitoring, Bilbao, Spain, July.
- Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q. and Qing, X. (2014), "Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features", Mech. Syst. Sign. Proc., 45(1), 225-239. https://doi.org/10.1016/j.ymssp.2013.10.017
- Sunny, A.I., Tian, G.Y., Zhang, J. and Pal, M. (2016), "Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion characterization", Sens. Actuat. A: Phys., 241, 34-43. https://doi.org/10.1016/j.sna.2016.02.010
- Tanner, N.A., Wait, J.R., Farrar, C.R. and Sohn, H. (2003), "Structural health monitoring using modular wireless sensors", J. Intellig. Mater. Syst. Struct., 14(1), 43-56. https://doi.org/10.1177/1045389X03014001005
- Van Den Abeele, K.A., Johnson, P.A. and Sutin, A. (2000), "Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS)", J. Res. Nondestruct. Evaluat., 12(1), 17-30. https://doi.org/10.1080/09349840009409646
- Wijetunge, S., Gunawardana, U. and Liyanapathirana, R. (2010), "Wireless sensor networks for structural health monitoring: Considerations for communication protocol design", Proceedings of the 2010 IEEE 17th International Conference on IEEE, Doha, Qatar, April.
- Wu, W. and Ni, C. (2004), "Probabilistic models of fatigue crack propagation and their experimental verification", Probabilist. Eng. Mech., 19(3), 247-257. https://doi.org/10.1016/j.probengmech.2004.02.008
- Yang, S., Jung, S.Y., Kim, K., Liu, P., Lee, S., Kim, J. and Sohn, H. (2018), "Development of a tunable low-frequency vibration energy harvester and its application to a self-contained wireless fatigue crack detection sensor", Struct. Health Monitor., 1475921718786886.
- Zaitsev, V.Y., Nazarov, V.E. and Talanov, V.I. (2006), "Nonclassical'manifestations of microstructure-induced nonlinearities: New prospects for acoustic diagnostics", Phys.-Uspekhi, 49(1), 89-94.
- Zhang, J. and Tian, G.Y. (2016), "UHF RFID tag antenna-based sensing for corrosion detection & characterization using principal component analysis", IEEE Trans. Antenn. Propagat., 64(10), 4405-4414. https://doi.org/10.1109/TAP.2016.2596898
- Zilberstein, V., Schlicker, D., Walrath, K., Weiss, V. and Goldfine, N. (2001), "MWM eddy current sensors for monitoring of crack initiation and growth during fatigue tests and in service", Int. J. Fatig., 23, 477-485. https://doi.org/10.1016/S0142-1123(01)00154-2
Cited by
- Investigation on modulation of multi-frequency ultrasonic waves in structures with quadratic nonlinearity vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.043