References
- Hershko A and Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67, 425-479 https://doi.org/10.1146/annurev.biochem.67.1.425
- Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533 https://doi.org/10.1146/annurev.biochem.70.1.503
- Finley D, Ciechanover A and Varshavsky A (2004) Ubiquitin as a central cellular regulator. Cell 116, S29-32, 2 p following S32 https://doi.org/10.1016/S0092-8674(03)00971-1
- Ravid T and Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9, 679-690 https://doi.org/10.1038/nrm2468
- Deshaies RJ and Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78, 399-434 https://doi.org/10.1146/annurev.biochem.78.101807.093809
- Joazeiro CA and Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549-552 https://doi.org/10.1016/S0092-8674(00)00077-5
- Ikeda F and Dikic I (2008) Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9, 536-542 https://doi.org/10.1038/embor.2008.93
- Kulathu Y and Komander D (2012) Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13, 508-523 https://doi.org/10.1038/nrm3394
- Olzmann JA and Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4, 85-87 https://doi.org/10.4161/auto.5172
- Shen M, Schmitt S, Buac D and Dou QP (2013) Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets 17, 1091-1108 https://doi.org/10.1517/14728222.2013.815728
- Ding F, Xiao H, Wang M, Xie X and Hu F (2014) The role of the ubiquitin-proteasome pathway in cancer development and treatment. Front Biosci (Landmark Ed) 19, 886-895 https://doi.org/10.2741/4254
- Orlowski RZ (1999) The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 6, 303-313 https://doi.org/10.1038/sj.cdd.4400505
- Reyes-Turcu FE, Ventii KH and Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78, 363-397 https://doi.org/10.1146/annurev.biochem.78.082307.091526
- Leznicki P and Kulathu Y (2017) Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci 130, 1997-2006 https://doi.org/10.1242/jcs.201855
- Nijman SM, Luna-Vargas MP, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786 https://doi.org/10.1016/j.cell.2005.11.007
- Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ and Urbe S (2013) Deubiquitylases from genes to organism. Physiol Rev 93, 1289-1315 https://doi.org/10.1152/physrev.00002.2013
- Komander D, Clague MJ and Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-563 https://doi.org/10.1038/nrm2731
- Abdul Rehman SA, Kristariyanto YA, Choi SY et al (2016) MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell 63, 146-155 https://doi.org/10.1016/j.molcel.2016.05.009
- Bielskiene K, Bagdoniene L, Mozuraitiene J, Kazbariene B and Janulionis E (2015) E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Medicina (Kaunas) 51, 1-9 https://doi.org/10.1016/j.medici.2015.01.007
- D'Arcy P, Wang X and Linder S (2015) Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 147, 32-54 https://doi.org/10.1016/j.pharmthera.2014.11.002
- Nicholson B, Marblestone JG, Butt TR and Mattern MR (2007) Deubiquitinating enzymes as novel anticancer targets. Future Oncol 3, 191-199 https://doi.org/10.2217/14796694.3.2.191
- Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104, 155-162 https://doi.org/10.1172/JCI6926
- Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosisinducing ligand in vivo. Nat Med 5, 157-163 https://doi.org/10.1038/5517
- Wang S and El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628-8633 https://doi.org/10.1038/sj.onc.1207232
- Pan G, O'Rourke K, Chinnaiyan AM et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276, 111-113 https://doi.org/10.1126/science.276.5309.111
- Sheridan JP, Marsters SA, Pitti RM et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821 https://doi.org/10.1126/science.277.5327.818
- Srivastava RK (2001) TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3, 535-546 https://doi.org/10.1038/sj.neo.7900203
- Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ and Ashkenazi A (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611-620 https://doi.org/10.1016/S1074-7613(00)80212-5
- Kantari C and Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813, 558-563 https://doi.org/10.1016/j.bbamcr.2011.01.026
- Zhang L and Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12, 228-237 https://doi.org/10.1038/sj.cgt.7700792
- Jin Z, McDonald ER 3rd, Dicker DT and El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosisinducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279, 35829-35839 https://doi.org/10.1074/jbc.M405538200
- Zhang Y and Zhang B (2008) TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res 6, 1861-1871 https://doi.org/10.1158/1541-7786.MCR-08-0313
- Song JJ, Szczepanski MJ, Kim SY et al (2010) c-Cbl-mediated degradation of TRAIL receptors is responsible for the development of the early phase of TRAIL resistance. Cell Signal 22, 553-563 https://doi.org/10.1016/j.cellsig.2009.11.012
- Kim SY, Kim JH and Song JJ (2013) c-Cbl shRNAexpressing adenovirus sensitizes TRAIL-induced apoptosis in prostate cancer DU-145 through increases of DR4/5. Cancer Gene Ther 20, 82-87 https://doi.org/10.1038/cgt.2012.88
- van de Kooij B, Verbrugge I, de Vries E et al (2013) Ubiquitination by the membrane-associated RING-CH-8 (MARCH-8) ligase controls steady-state cell surface expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor 1. J Biol Chem 288, 6617-6628 https://doi.org/10.1074/jbc.M112.448209
- Park EJ, Min KJ, Choi KS et al (2016) Chloroquine enhances TRAIL-mediated apoptosis through up-regulation of DR5 by stabilization of mRNA and protein in cancer cells. Sci Rep 6, 22921 https://doi.org/10.1038/srep22921
- D'Arcy P and Linder S (2012) Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 44, 1729-1738 https://doi.org/10.1016/j.biocel.2012.07.011
- D'Arcy P, Brnjic S, Olofsson MH et al (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 17, 1636-1640 https://doi.org/10.1038/nm.2536
- Oh YT, Deng L, Deng J and Sun SY (2017) The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5. Sci Rep 7, 8027 https://doi.org/10.1038/s41598-017-08424-w
- Oh YT, Qian G, Deng J and Sun SY (2018) Monocyte chemotactic protein-induced protein-1 enhances DR5 degradation and negatively regulates DR5 activationinduced apoptosis through its deubiquitinase function. Oncogene 37, 3415-3425 https://doi.org/10.1038/s41388-018-0200-9
- Jin Z, Li Y, Pitti R et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137, 721-735 https://doi.org/10.1016/j.cell.2009.03.015
- Bosu DR and Kipreos ET (2008) Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div 3, 7 https://doi.org/10.1186/1747-1028-3-7
- Petroski MD and Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6, 9-20 https://doi.org/10.1038/nrm1547
- Gonzalvez F, Lawrence D, Yang B et al (2012) TRAF2 Sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer. Mol Cell 48, 888-899 https://doi.org/10.1016/j.molcel.2012.09.031
- Xu L, Zhang Y, Qu X et al (2017) DR5-Cbl-b/c-Cbl-TRAF2 complex inhibits TRAIL-induced apoptosis by promoting TRAF2-mediated polyubiquitination of caspase-8 in gastric cancer cells. Mol Oncol 11, 1733-1751 https://doi.org/10.1002/1878-0261.12140
- Li Y, Kong Y, Zhou Z et al (2013) The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell Death Dis 4, e935 https://doi.org/10.1038/cddis.2013.464
- Zhou Z, Liu R and Chen C (2012) The WWP1 ubiquitin E3 ligase increases TRAIL resistance in breast cancer. Int J Cancer 130, 1504-1510 https://doi.org/10.1002/ijc.26122
- Christian PA, Fiandalo MV and Schwarze SR (2011) Possible role of death receptor-mediated apoptosis by the E3 ubiquitin ligases Siah2 and POSH. Mol Cancer 10, 57 https://doi.org/10.1186/1476-4598-10-57
- Bodmer JL, Holler N, Reynard S et al (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2, 241-243 https://doi.org/10.1038/35008667
- Sprick MR, Weigand MA, Rieser E et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599-609 https://doi.org/10.1016/S1074-7613(00)80211-3
- Lee EW, Kim JH, Ahn YH et al (2012) Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat Commun 3, 978 https://doi.org/10.1038/ncomms1981
- Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J and Hood L (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7, 821-830 https://doi.org/10.1016/S1074-7613(00)80400-8
- Hsu H, Shu HB, Pan MG and Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308 https://doi.org/10.1016/S0092-8674(00)80984-8
- Sessler T, Healy S, Samali A and Szegezdi E (2013) Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 140, 186-199 https://doi.org/10.1016/j.pharmthera.2013.06.009
- Christofferson DE, Li Y and Yuan J (2014) Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol 76, 129-150 https://doi.org/10.1146/annurev-physiol-021113-170259
- Wertz IE, O'Rourke KM, Zhou H et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694-699 https://doi.org/10.1038/nature02794
- Bellail AC, Olson JJ, Yang X, Chen ZJ and Hao C (2012) A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma. Cancer Discov 2, 140-155 https://doi.org/10.1158/2159-8290.CD-11-0172
- Dong B, Lv G, Wang Q et al (2012) Targeting A20 enhances TRAIL-induced apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 418, 433-438 https://doi.org/10.1016/j.bbrc.2012.01.056
- Lafont E, Kantari-Mimoun C, Draber P et al (2017) The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J 36, 1147-1166 https://doi.org/10.15252/embj.201695699
- Kirisako T, Kamei K, Murata S et al (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25, 4877-4887 https://doi.org/10.1038/sj.emboj.7601360
- Roth W and Reed JC (2004) FLIP protein and TRAIL-induced apoptosis. Vitam Horm 67, 189-206 https://doi.org/10.1016/S0083-6729(04)67011-7
- Shirley S and Micheau O (2013) Targeting c-FLIP in cancer. Cancer Lett 332, 141-150 https://doi.org/10.1016/j.canlet.2010.10.009
- Griffith TS, Chin WA, Jackson GC, Lynch DH and Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161, 2833-2840
- Xiao CW, Yan X, Li Y, Reddy SA and Tsang BK (2003) Resistance of human ovarian cancer cells to tumor necrosis factor alpha is a consequence of nuclear factor kappaB-mediated induction of Fas-associated death domain-like interleukin-1beta-converting enzyme-like inhibitory protein. Endocrinology 144, 623-630 https://doi.org/10.1210/en.2001-211024
- Zhang X, Jin TG, Yang H, DeWolf WC, Khosravi-Far R and Olumi AF (2004) Persistent c-FLIP(L) expression is necessary and sufficient to maintain resistance to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in prostate cancer. Cancer Res 64, 7086-7091 https://doi.org/10.1158/0008-5472.CAN-04-1498
- Valnet-Rabier MB, Challier B, Thiebault S et al (2005) c-Flip protein expression in Burkitt's lymphomas is associated with a poor clinical outcome. Br J Haematol 128, 767-773 https://doi.org/10.1111/j.1365-2141.2005.05378.x
- Valente G, Manfroi F, Peracchio C et al (2006) cFLIP expression correlates with tumour progression and patient outcome in non-Hodgkin lymphomas of low grade of malignancy. Br J Haematol 132, 560-570 https://doi.org/10.1111/j.1365-2141.2005.05898.x
- Ullenhag GJ, Mukherjee A, Watson NF, Al-Attar AH, Scholefield JH and Durrant LG (2007) Overexpression of FLIPL is an independent marker of poor prognosis in colorectal cancer patients. Clin Cancer Res 13, 5070-5075 https://doi.org/10.1158/1078-0432.CCR-06-2547
- Chang L, Kamata H, Solinas G et al (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124, 601-613 https://doi.org/10.1016/j.cell.2006.01.021
- Yang F, Tay KH, Dong L et al (2010) Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIP(L) from degradation by the E3 ligase itch in human melanoma cells. Cell Death Differ 17, 1354-1367 https://doi.org/10.1038/cdd.2010.29
- Seo BR, Min KJ, Woo SM et al (2017) Inhibition of cathepsin s induces mitochondrial ros that sensitizes trail-mediated apoptosis through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal 27, 215-233 https://doi.org/10.1089/ars.2016.6749
- Zhao L, Yue P, Khuri FR and Sun SY (2013) mTOR complex 2 is involved in regulation of Cbl-dependent c-FLIP degradation and sensitivity of TRAIL-induced apoptosis. Cancer Res 73, 1946-1957 https://doi.org/10.1158/0008-5472.CAN-12-3710
- Hsu TS, Mo ST, Hsu PN and Lai MZ (2018) c-FLIP is a target of the E3 ligase deltex1 in gastric cancer. Cell Death Dis 9, 135 https://doi.org/10.1038/s41419-017-0165-6
- Haimerl F, Erhardt A, Sass G and Tiegs G (2009) Down-regulation of the de-ubiquitinating enzyme ubiquitin-specific protease 2 contributes to tumor necrosis factor-alpha-induced hepatocyte survival. J Biol Chem 284, 495-504 https://doi.org/10.1074/jbc.M803533200
- Panner A, Crane CA, Weng C et al (2010) Ubiquitinspecific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res 70, 5046-5053 https://doi.org/10.1158/0008-5472.CAN-09-3979
- Jeong M, Lee EW, Seong D et al (2017) USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene 36, 458-470 https://doi.org/10.1038/onc.2016.215