Abstract
Multivariate Confidence Region (MCR) cannot be used to obtain the confidence region of the mean vector of multivariate data when the normality assumption is not satisfied; however, the Quantile Confidence Region (QCR) could be used with a Multivariate Quantile Vector in these cases. The coverage rate of the QCR is better than MCR; however, it has a disadvantage because the QCR has a wide shape when the probability density function follows a bimodal form. In this study, we propose a Quantile Confidence Region using the Highest density (QCRHD) method with the Highest Density Region (HDR). The coverage rate of QCRHD was superior to MCR, but is found to be similar to QCR. The QCRHD is constructed as one region similar to QCR when the distance of the mean vector is close. When the distance of the mean vector is far, the QCR has one wide region, but the QCRHD has two smaller regions. Based on these features, it is found that the QCRHD can overcome the disadvantages of the QCR, which may have a wide shape.