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Abstract 
 

Impossible differential cryptanalysis is an essential cryptanalytic technique and its key point is 
whether there is an impossible differential path. The main factor of influencing impossible 
differential cryptanalysis is the length of the rounds of the impossible differential trail because 
the attack will be more close to the real encryption algorithm with the number becoming 
longer. We provide the upper bound of the longest impossible differential trails of  several 
important block ciphers. We first analyse the national standard of the Russian Federation in 
2015, Kuznyechik, which utilizes the 16-byte LFSR to achieve the linear transformation. We 
conclude that there is no any 3-round impossible differential trail of the Kuznyechik without 
the consideration of the specific S-boxes. Then we ascertain the longest impossible differential 
paths of several other important block ciphers by using the matrix method which can be 
extended to many other block ciphers. As a result, we show that, unless considering the details 
of the S-boxes, there is no any more than or equal to 5-round, 7-round and 9-round impossible 
differential paths for KLEIN, Midori64 and MIBS respectively. 
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1. Introduction 

Block ciphers play a large part in the process of constructing numerous symmetric 
cryptographic plans whose core security is determined by the ability of the underlying block 
ciphers to fight the existing cryptanalytic technologies. Differential cryptanalysis (DC) is one 
of the most essential cryptanalytic techniques [1]. Most block ciphers are currently designed to 
be resilient to the attack of the differential cryptanalysis. In order to verify the security of a 
block cipher resistance differential cryptanalysis, the usual way is to find a longest differential 
characteristics path which is able to differentiate from a random permutation. To a certain 
degree, the success of this attack depends chiefly on the opponents careful analysis of the 
internal structure of the encryption algorithm.  

Impossible differential cryptanalysis (IDC) was first proposed by Biham et al. to attack 
Skipjack [2] and applied by Knudsen against DEAL [3]. It is a filtering way which utilizes 
differentials with probability zero to find the correct key by throwing away the wrong keys. 
Until now, a lot of well-known lightweight block ciphers being attacked using IDC, have been 
published, such as AES, Camellia [4], CLEFIA [5],ARIA[6] and Zodiac[7]. 

IDC is generally composed of two steps. To begin with, the adversary attempts to find out 
an impossible differential trail, i.e., the probability of the trail is zero. Next, after obtaining a 
serial of plaintext-ciphertext pairs, the opponent supposes some subkey sets involved in the 
outer rounds of the impossible differential path, and then encrypts/decrypts partially each pair 
of plaintext-ciphertext to verify whether the corresponding internal difference states are 
identical. Once the input and output differences of the impossible differentials are identical, 
the supposed subkey will be abandoned. The correct key must be found if we get rid of all 
incorrect keys. 

The success of IDC is mainly depended on the number of the rounds of the impossible 
differential paths, the detail of input/output difference patterns and the strength of complexity 
of one-round encryption/decryption. Among them, one important aspect is the detail of 
input/output difference, because we can improve attacks [8] in the time/data complexities with 
higher possibilities. However, the core aspect of influencing IDC is the length of the rounds 
because the attack will be more close to the real encryption algorithm with the number 
becoming longer and has more practical significance, and this paper is aimed to explore an 
upper bound of the longest impossible differentials. 

An important approach, which can be used to search for differential characteristics of the 
block cipher, is proposed by Sun et al. in ASIACRYPT 2014 [9] and it is based on MILP 
which can evaluate the security (obtain security bound) of a block cipher against the 
differential attacks. They successfully proved that they attained the security bounds for 
LBlock and PRESENT-80 against related-key differential attacks. Also, they presented a new 
approach to find characteristics for DESL, LBlock and PRESENT-128, which involved more 
rounds or higher probability than the previous results. There are several other automatic 
methods of the block ciphers to get the truncated impossible differentials effciently, such as 
U-method [10], UID-method [11] and WW-method [12]. The U-method was proposed by Kim 
et al. in Indocrypt 2003. Its goal is to search the impossible differentials through the 
miss-in-the-middle technique and the matrix operations. However, it has drawbacks in 
ascertaining some types of contradictions and several longer impossible differentials. The 
UID-method improved the evaluation of impossible differentials by removing some 
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conditions in the U-method and making full use of more contradictory conditions. The 
WW-method was proposed by Wu et al. in Indocrypt 2012 and improved and extended the 
approach of the above two methods. The above methods are mainly used to search the 
differential characteristics or impossible differentials as more as possible. 

In CRYPTO 2015, Sun et al. have proved that they found almost all impossible differentials 
of a block cipher [13]. And they first proposed the concept of structure, the independent of the 
choices of the S-boxes and the dual structure. The dual structure is used to link zero correlation 
linear hulls and impossible differentials. Constructing zero correlation linear hulls of the dual 
structure is equal with building impossible differentials of a structure. 

In EUROCRYPT 2016, Sun et al. chiefly researched the security of structures resistance 
impossible differential [14]. They first proposed the problem whether there exists an r-round 
impossible differential. As a result, there does not exist any 5-round impossible differentials of 
AES or ARIA, and any 9-round independent impossible differentials of the Camellia without 
F L/F L-1 layer unless the details of the non-linear layer of them are considered. 
 

Our Contribution. This paper aims to find an upper bound of the longest impossible 
differentials of Several Block Ciphers. We analyze several important block ciphers of the SPN 
and feistel structure in detail. Then, we apply the matrix to express the linear transformation 
layer of these block ciphers and give a detailed process.  

We first analyse the national standard of the Russian Federation in 2015, Kuznyechik, 
which utilizes the 16-byte LFSR to achieve the linear transformation. By the analysis, we 
conclude that there is no any 3-round impossible differential of the Kuznyechik without the 
consideration of the specific S-boxes. We next ascertain the longest impossible differentials of 
several other important block ciphers by using the matrix method which can be extended to 
many other block ciphers. Finally, we provide technical support about IDC for a lot of block 
ciphers because we can quickly find the longest impossible differentials.  

As a result, we show that, unless considering the details of the S-boxes, there is no 
impossible differential path more than or equal to 3-round, 5-round, 7-round and 9-round 
impossible differentials for Kuznyechik[15], KLEIN[16] [17], Midori64[18] and MIBS[19] 
[20] respectively. 

 
Organization of the paper. Section 2 describes some notations used in this paper such as 

SPN structure, Feistel structure, the matrix of linear transformation and impossible 
differentials. Section 3 presents the impossible differentials cryptanalysis of the SPN structure 
and proves the upper bound of the longest impossible differential paths of Kuznyechik, 
KLEIN and Midori64. Then, Section 4 depicts the impossible differentials cryptanalysis of the 
Feistel structure and gives the upper bound of the longest impossible differential trails of 
MIBS. Finally, we draw our conclusion in Section 5.  

2. Preliminaries 
These notations and basic knowledge are used in this article. 
Notations. 

2bF  : a vector with length b. 

2b
nF  : the vector space over 

2bF  with dimension n. 
Z : the integer ring. 

( )Xχ : the truncated characteristic of X . 
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P  : the matrix of the linear layer of the block ciphers, where 
2

( ) b
n n

ijP p F ×= ∈  
*P : the characteristic matrix of P, where * *( ) n n

ijP p Z ×= ∈ . 
||  : concatenation. 

( )r
SPε : an r-round SPN structure. 
( )r

SPF : an r-round Feistel structure with SP-type round function. 

 
Fig. 1. The round structure of SPN and Feistel 

 
The Block Ciphers of SPN Structure. The SPN structure is broadly used in cryptographic 
primitives’ composition. One round of an SPN cipher typically has three layers (Fig. 1, Left): 
the SubkeyAddition layer, the nonlinear transformation Sbox-layer and the linear permutation 
layer P. The SubkeyAddition layer is omitted in this paper because it does not cause the 
propagation of differences. The Sbox-layer can accomplish confusion and P-layer can achieve 
diffusion. We divide the input a of Sbox-layer into n parts, i.e., a = (a0,…,an-1), where ai(0 <=i 
<= n - 1) is a b-bit byte. 

To begin with, ai is implemented by the non-linear transformation si as follows: 
 0 0 1 1 2

( ) ( ( ),..., ( )) b
n

n ny S a s a s a F− −= = ∈                                     (1)   

Then, y is transformed by 
2 2

( )b b
m mP F F→ . Additionally, we omit the last round linear 

permutation layer P since it does not influence the length of an impossible differential, i.e., an 
r-round SPN structure can be signified by ( 1)( ) rS P S−

  . 

Specifically, the SP-type function is denoted as 
2 2

: b b
m mf F F→  in this paper. 

The Block Ciphers of Feistel Structure. The Feistel structure is depicted on the right of 
Fig.1. Let 

2
( || ) b

n
i iL R F∈ and  1 1 2

( || ) b
n

i iL R F+ + ∈  be the input and output of the round function 
F of the i-th round, respectively, where 0 1i r≤ ≤ − . 

{ 1

1

( )i i i

i i

L F L R
R L
+

+

= ⊕
=                                                       (2)   

Similar to the SPN structure, the SubkeyAddition is omitted. In order to keep the 
consistency of encryption and decryption process, the left and the right are not exchanged in 
the last round. Notice that the speed of encryption is slow since every bit can be encrypted with 
two rounds. 

Impossible Differentials. Let 2 2: n mG F F→ , 2
nFδ ∈  and 2

mF∆∈ . The probability of 
δ → ∆  is defined as  
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{ }2( ) # | ( ) ( ) / 2n np x F G x G xδ δ→ ∆ = ∈ ⊕ ⊕ = ∆                            (3)   

If ( ) 0p δ → ∆ = , then δ → ∆   is called an impossible differential of G. 

Definition 1([14]). Let 2 2: n nE F F→  be a encryption algorithm of a block cipher, whose 

non-linear components are the bijective S-boxes. A structure 2
E nFε ∈  is denoted as a group 

of block ciphers E′ which is equal to E, besides the S-boxes of E′ can take all possible bijective 
transformations. Let 2, nFα β ∈ . If for any E′ Eε∈ , α β is an impossible differential of E′. 

Then α β  is called an impossible differential of Eε . 

Truncated Characteristic. 0 1( ,..., )nX x x −= , where 
2b
nX F∈  and 

2
(0 1)bi F i nx ∈ ≤ ≤ − . 

Let 22
: bF Fθ → be defined as 

{ 0
0 0
1( ) i

i

x
i xxθ =

≠=                                                   (4)   

Then, ( )Xχ  denotes the truncated characteristic of  X, as follows: 

0 21( ),...( ) ( ), ( ) n
nX x x Fθχ θ − ∈=                                          (5)   

The Matrix of Linear Permutation. Let the matrix P represent the linear permuation of 
the block cipher, where 

2
( ) b

n n
ijP p F ×= ∈ . For the block ciphers of SPN structure, the matrix P 

represents the linear permutation layer P, i.e., not including the SubkeyAddition layer and the 
nonlinear transformation Sbox-layer. For the block ciphers of Feistel structure, the matrix P 
represents the linear permutation layer P of the round function. 

AES is one of the most popular SPN ciphers so far. The SubBytes(SB) is the only non-linear 
transformation. The linear permutation includes ShiftRows(SR) and MixColumns(MC). Let 
the state after SB be S which consists of ia ,  where i = 0,1,2,…,15 and the length of ia is 8 bits. 
The state after SR and MC can be described as follows: 

 
0 4 8 12 0 4 8 12 0 4 8 12

1 5 9 13 5 9 13 1 5 9 13 1

2 6 10 14 10 14 2 6 10 14 2 6

3 7 11 15 15 3 7 11 15 3 7 11

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

SR MC

a a a a a a a a a a a a
a a a a a a a a a a a a

S
a a a a a a a a a a a a
a a a a a a a a a a a a

     
     
     = → →
     
     

     








 


 

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

0 5 10 15 4 9 14

2 3 2 3 2 3 2 3
2 3 2 3 2 3 2 3

2 3 2 3 2 3 2 3
3 2 3

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a

+ + + + + + + + + + + +
+ + + + + + + + + + + +

=
+ + + + + + + + + + + +
+ + + + + 3 8 13 2 7 12 1 6 112 3 2 3 2a a a a a a a a a

 
 
 
 
 

+ + + + + + + 

 

 
If we consider the 4 ×  4 state S as a vector S′ in 8

16
2

F , the linear permutation which includes 
the SR and the MC can be also written as the following P×  S′, where the linear permutation 
matrix P is in 8

16 16
2

F ×  as follows: 
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2 0 0 0 0 3 0 0 0 010 0 0 01
10 0 0 0 2 0 0 0 0 3 0 0 0 01
10 0 0 010 0 0 0 2 0 0 0 0 3
3 0 0 0 010 0 0 010 0 0 0 2
0 0 01 2 0 0 0 0 3 0 0 0 010
0 0 0110 0 0 0 2 0 0 0 0 3 0
0 0 0 310 0 0 010 0 0 010
0 0 0 2 3 0 0 0 010 0 0 010
0 010 0 0 01 2 0 0 0 0 3 0 0
0 0 3 0 0 0 0110 0 0 0 2 0 0
0 0 2 0 0 0 0 310 0 0 010 0
0 010 0 0 0 2 3 0 0 0 010 0

'

0 3 0

P S× =

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 010 0 0 01 2 0 0 0
0 2 0 0 0 0 3 0 0 0 0110 0 0
010 0 0 0 2 0 0 0 0 310 0 0
010 0 0 010 0 0 0 2 3 0 0 0

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

   



0 5 10 15

0 5 10 15

0 5 10 15

0 5 10 15

4 9 14 3

4 9 14 3

4 9 14 3

4 9 14 3

8 13 2 7

8 13 2 7

8 13 2 7

8 13 2 7

12 1 6 11

12 1

2 3
2 3

2 3
3 2
2 3

2 3
2 3

3 2
2 3

2 3
2 3

3 2
2 3

2 3

a a a a
a a a a
a a a a
a a a a
a a a a

a a a a
a a a a
a a a a
a a a a

a a a a
a a a a
a a a a
a a a a

a a a

+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +

=
+ + +
+ + +
+ + +
+ + +
+ + +
+ +




6 11

12 1 6 11

12 1 6 11

2 3
3 2

a
a a a a
a a a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
 + + +
 

+ + +  

 ,    

*

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0

P =

0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Similar to SPN, we can use the matrix P to represent the linear permutation operations of the 
round function of Feistel strucures with SP-type round functions. 

Characteristic Matrix. Let * *( ) n n
ijP p Z ×= ∈ denote the characteristic matrix of 

( ) n n
ijP p F ×= ∈  for 0 , 1i j n≤ ≤ − , where * ( )ij ijp pθ= , i.e., * 0ijp =  if 0ijp =  and 

* 1ijp =  otherwise. Let the matrix ( ) n n
ijB b Z ×= ∈ . B be non-negative if all ijb  are 

non-negative, and positive if all ijb are positive. Obviously, *P is always non-negative. Then 

the characteristic matrix *P of AES as shown above. 

3. Impossible Differentials of the SPN Structure  
We use the matrix method to ascertain the upper bound of the longest impossible 

differentials for several SPN ciphers. 

3.1 An Upper Bound for the Rounds of Impossible Differentials 

Definition 2. Let 
2b
n nP F ×∈ , *P  be the characteristic matrix of  P , and  

* *( ) ( )m
mf P P=                                                       (6) 

Then the smallest integer m is called type 1 primitive index of P (for SPN structure), s.t. 
*( )mf P  is a positive matrix. For example, if m = 3, then * * 3

3( ) ( )f P P=  is a positive matrix, 

but * * 2
2 ( ) ( )f P P=  is not positive matrix. 

Assume µ ν→  is a possible differential of ( )r
SPε . So, there is always a few 'α  and 'β , s.t., 

' '
S PS SP Sε ε εµ µ ν ν→ → →



                                             (7)   
is a possible differential of ( )r

SPε . Thus for any *µ  and *ν  ,s.t., *( ) ( )χ µ χ µ=  and 
*( ) ( )χ ν χ ν= , 

* *' '
S PS SP Sε ε εµ µ ν ν→ → →



                                     (8)   
is also a possible differential. 
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As discussed previously, we can ascertain the longest of impossible differentials. Next, we 
will present an upper bound for the length of impossible differentials with considering merely 
the property of the P layer for an SPN structure. 

 
Fig. 2. ( R1(P) + R-1(P) + 1)-round differential for SPε  

 
Fig.2 describes the maximal length of impossible differential trail of an SPN cipher. Let 

the intermediate 1µ  be m bytes. If anyone byte of 1µ  has a difference, then each byte of 1ν  
has a difference after encrypting 1( )R P  rounds, i.e., 1| ( ) | 1χ µ =  and 1| ( ) | mχ ν = . In a 
similar way, if anyone byte of 2µ  has a difference, then each byte of 2ν  has a difference after 
decrypting 1( )R P−  rounds, i.e., 2| ( ) | 1χ µ =  and 2| ( ) | mχ ν = . Since 1 2| ( ) | | ( ) | mχ ν χ ν= = , 

1 2ν ν→  is a one-round possible differential. So the following theorem holds. 

Theorem 1( [14]). Let 1( )R P  and 1( )R P−  be the type 1 primitive indexes of P  and 1P−  

respectively. There is no any impossible differential r of ( )r
SPε  for 1( ) ( ) 1r R P R P−≥ + + (As 

shown in Fig.2). 
For AES, we only consider the property of the P layer. The state is S0 which consists of ia  

for i =0,1,2,…15, where the length of ia  is 8 bits. The state after the Matrix P of Linear 
Permutation (one round) is S1 which consists of ib  for i = 0,1,2,… ,15. Then the state after the 
Matrix P again is S2 which consists of ic  for i = 0,1,2,…,15. S0, S1 and S2 are depicted as 
follows. 
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Obviously, if 0| ( ) | 1Sχ = , then 1| ( ) | 4Sχ =  and 2| ( ) | 16Sχ = . In other words, *P  is not a 

positive matrix, however, * 2( )P  is a positive matrix. So 1( )R P = 2. Similarly, 1( )R P−  = 2. 

3.2 Cryptanalysis of Kuznyechik Cipher 

Kuznyechik [15] is the national standard [GOST R 34.12-2015] of the Russian Federation 
in 2015. It applies cryptographic techniques to process and protect information, including the 
confidentiality, authenticity, and integrity of data. The Standard complies with modern 
cryptographic requirements and is designed for efficient implementation of hardware and 
software. 

Kuznyechik(see Fig.3) is a 128-bit block cipher with 256 bits key. The encryption algorithm 
is a replacement 

1 10, ,K KE


 which is defined on 1282
F , as shown below: 

1 10, , 10 9 2 1( ) [ ] [ ] [ ] [ ]( )K KE a X K L S X K L S X K L S X K a=


                              (9)   

where 15 14 13 2 1 0|| || || || ||a a a a a a a=  and 82
(0 15)ia F i∈ ≤ ≤ .  

 

 
 

Fig. 3. The round function of Kuznyechik 
 

Moreover, X denotes AddRoundKey, and S represents the bijective nonlinear mapping, i.e., 
15 14 13 2 1 0 15 14 13 2 1 0( ) ( || || || || || ) || || || || ||S a S a a a a a a b b b b b b= =  , where 

( )(0 15)i ib a iπ= ≤ ≤ . L means R16, i.e., the linear transformation layer, where 

15 14 13 2 1 0 15 0 15 14 13 2 1( ) ( || || || || || ) ( , , ) || || || || ||R b R b b b b b b l b b b b b b b= =    is a 16-byte 
LFSR. The register moves 8 bits each time, and the new state is denoted by the state of LFSR 
after moving 16 times. The detailed descriptions of LFSR are in Fig. 4. 
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Fig. 4. The LFSR of the round function of Kuznyechik 
 

For Kuznyechik, the P layer means the L operation, i.e., P = R16. Then we consider the 16 
states as a vector in 8

16
2

F and the irreducible polynomial over this finite fields is 
8 7 6 1x x x x+ + + + . By calculation, the following matrix can be used to represent R, R2 and 

R16. 
148 32 133 16 194 192 1 251 1 192 194 6 133 32 148 1
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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0 0
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For R, the 16 elements in row 0 are non-zero, and there are 15 zeros and one 1 in the other 15 rows. 

For R2, the 16 elements in row 0 and row 1 are non-zero, and there are 15 zeros and one 1 in the 
other 14 rows. Note that the multiplication of any two nonzero numbers is still nonzero in the 
finite field. 

16

207 152 116 191 147 142 242 243 10 191 246 169 234 142 77 110
110 32 198 218 144 72 137 156 193 100 184 45 134 68 208 162
162 200 135 112 104 67 28 43 161 99 48 107 159 48 227 118
118 51 16 12 28 17 214 106 166 215 246 73 70 20 232 114
114  242 107 202   32

( )R b =

   235     2   164  141   212  196   1   101 221   76  108
108  118  236   12  197  188  175  110 163   225  144  88    14    2   195  72  
72   213   98    23    6     45    196  231  213  235  153  120   82  245  22  122  
122  230   78   26   187   46   241  190  212  175   55  177  212   42  110  184
184   73  135   20   203  141  171   73    9     108   42    1     96   142  75    93
93   212  184   47  141   18   238   246   8      84    15  243  152 200  127  39
39   159  190  104   26  124  173  201  132    47   235  254  198  72  162  189
189  149   94    48  233   96   191  16    239   57   236   145  127  72  137   16
16    233  208  217  243  148   61  175  123  255  100   145   82  248  13  221
221 153  117  202  151   68    90   224   48   166   49   211  223   72  100  132
132   45  116  150  93    119   111  222  84  180  141  209   68    60  165  148
148   32  133   16  194   192     1    251    1  192  194    16  133   32    148   1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1

P =

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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By computing, there is no 0 element in R16, i.e., R16 is a positive matrix. For Kuznyechik, 
the linear transformation of each round is iterated 16 times, which is equivalent to 16 rounds of 
other block cipher algorithms. Therefore, the characteristic matrix of R16 (i.e. *P ) is also the 
positive matrix. Then we have ( )R P  = 1.. In a similar way, 1( )R P− = 1. Then we get the 
following conclusion: 

Proposition 1. There is no any more than or equal to 3-round impossible differential of 
Kuznyechikε . Or equivalently, there is no any 3-round impossible differential of the Kuznyechik 

unless considering the details of the S-boxes. 

3.3 Cryptanalysis of KLEIN Cipher 
KLEIN family [16] is proposed by Gong et al. at RFIDSec 2011, with a fixed 64-bit block 

size. It supports three key of 64-bit, 80-bit and 96-bit, along with 12,16 and 20 rounds 
respectively. The experimental implementation results of hardware and software show that 
KLEIN has a good performance in constrained resource environments. 

KLEIN uses 4-bit Sboxes and AES MixColumn in a SPN structure. Such a combination is 
low memory implementation in both hardware and software, but KLEIN family may exists 
serious risks and they are not validated with further external analysis. The present 
cryptanalysis results of KLEIN, shown by designers, are about 4-round differential and linear 
attacks, 5-round integral attack. The designers also considered the Key schedule attack, 
algebraic attack and side-channel attack. And we can apply the high order differential and the 
high order integral properties to improve the result of the integral analysis. Ahmadian et al. 
shown a full round attack on KLEIN by using a biclique [17]. 

 

 
Fig. 5. The structure of the block cipher KLEIN 

http://cn.bing.com/dict/search?q=block&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=cipher&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=algorithms&FORM=BDVSP6&mkt=zh-cn
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KLEIN supports 64-bit, 80-bit and 96-bit three key sizes but all of them are 64-bit block 
sizes. In this paper we focuse only on KLEIN-64 (see Fig. 5) whose round function consists of 
four steps as below. 

(1) AddRoundKey(AK), the 64-bit state is XORed with a 64-bit round key. 
 (2) SubNibbles(SN), which divides the 64-bit intermediate state into sixteen 4-bit nibbles 

and puts them into the same sixteen 4 ×  4 S-boxes. 
(3) RotateNibbles(RN), the 64-bit state are rotated left 16 bits in every round. 
(4) MixNibbles(MN), two AES MixColumn are applied concurrently, each 32-bit is 

operated by one AES Mix-Column. 
The AES MixColumn operation is the following matrix(M1) multiplication in GF(28 ) and 

multiply modulo x4 + 1. The corresponding irreducible polynomial is : x8 + x4 + x3 + x + 1. 
Let the state after SN be S which consists of ia  for i = 0,1,2,…,7, where the length of ia  is 

8 bits. These two operations of RN and MN can be denoted as follows: 
 

0 4 2 6 62

1 5 3 7 3 7

2 6 4 0 4 0

53 7 5 1 1

02 03 01 01 02 03 01 01
01 02 03 01 01 02 03 01

||
01 01 02 03 01 01 02 03
03 01 01 02 03 01 01 02

RN MN

a a a a aa
a a a a a a

S
a a a a a a

aa a a a a

         
         
         = → →
         
         

         

 

 

2 3 4 5 6 7 0 1

2 3 4 5 6 7 0 1

2 3 4 5 6 7 0 1

2 3 4 5 6 7 0 1

2 3 2 3
2 3 2 3

2 3 2 3
3 2 3 2

a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a

+ + + + + + 
 + + + + + + =
 + + + + + +
 

+ + + + + + 

. 

If we consider the state S as a vector 'S  in 8
8

2
F , the linear permutation, which includes RN and 

MN, can be also written as the following 'P S× , where the linear permutation matrix P is 

in 8
8 8

2
F × .                       

2 3 4 50

2 3 4 51

2 3 4 52

3 2 3 4 5

4 6 7

5

6

7

2 30 0 2 311 0 0
2 30 01 2 31 0 0

2 30 011 2 3 0 0
3 20 0 311 2 0 0

' .
110 0 0 0 2 3 2 3
310 0 0 01 2
2 3 0 0 0 011
1 2 0 0 0 0 31

a a a aa
a a a aa
a a a aa

a a a a a
P S

a a a a
a
a
a

+ + +  
   + + +  
  + + + 
   + + +  × = =   + +
  
  
  
  
     

0 1

6 7 0 1

6 7 0 1

6 7 0 1

2 3
2 3

3 2

a
a a a a
a a a a
a a a a

 
 
 
 
 
 
 +
 

+ + + 
 + + + 
 + + + 

 

 So,               
* * 2

0 0 2 311 0 0 0 011110 0 2 2 2 2 2 2 2
0 01 2 31 0 0 0 011110 0
0 011 2 3 0 0 0 011110 0
0 0 311 2 0 0 0 011110 0

, , ( )
110 0 0 0 2 3 110 0 0 011
31 0 0 0 01 2 110 0 0 011
2 3 0 0 0 011 110 0 0 011
1 2 0 0 0 0 31 110 0 0 011

P P P

   
   
   
   
   
   = = =   
   
   
   
   
      

2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2

 
 
 
 
 
 
 
 
 
 
 
  

 

Since *P is negative and ( *P )2 is positive, we have ( )R P  = 2. Similarly, 1( )R P− = 2. Then 
we get the following conclusion: 
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Proposition 2. There is no any more than or equal to 5-round impossible differential of 
KLEINε . Or equivalently, there is no any 5-round impossible differential of the KLEIN unless 

considering the details of the S-boxes. 

3.4 Cryptanalysis of Midori64 Cipher 
The Midori64 [18] is another popular SPN ciphers and designed by Banik et al. at A 

SIACRYPT 2015. Midori family is also a lightweight block ciphe. Midori-64 support 64-bit 
block sizes and 128-bit keys along with 16 rounds. The designers try to optimize every part of 
the circuit in order to decrease the energy consumption and make both encryption and 
decryption achieved by a little adjustment in the circuit. The designers declared that there does 
not exist any more than 7-round impossible differential trail for Midori64. 

 

 
Fig. 6. The round function of Midori64 

 
In this paper, we focus on Midori64(see Fig.6) whose round function consists of four steps 

as below. 
(1) SubCell(SC), apply the same 16 non-linear S-boxes on the state in parallel. 
(2) ShuffeCell(SFC), the shuffe is as follows: (a0, a1, a2,… , a13, a14, a15 ) ←  ( a0, a10, a5, a15, 

a14, a4, a11, a1, a9, a3, a12, a6, a7, a13, a2, a8 ). 
(3) MixColumn(MC), Midori-64 utilizes the matrix M2 to confuse every 4-nibble column 

of the state S , i.e. 1 2 3 2 1 2 3( , , , ) ( , , , )t t
i i i i i i i ia a a a M a a a a+ + + + + +← 

, where i = 0,4,8,12. 

2

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

M

 
 
 =
 
 
 

,     
0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

a a a a
a a a a

S
a a a a
a a a a

 
 
 =
 
 
 

 

(4) AddKey(AK), the 64-bit state is XORed with a 64-bit round key. 
Similar to KLEIN, we consider the 4 ×4 matrix of Midori-64 as the state 4

16
2

S F∈ , where 
the size of each cell of S is 4 bits. Let the state S after SC be described as shown above, and the  
state after SFC and MC can be written as follows. 
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0 14 9 7 5 10 15 1 4 11 3 6 12 2 8 13

10 4 3 13 5 0 15 1 11 14 6 9 12 2 7 8

5 11 12 2 0 10 15 1 4 14 3 6 9 7 8 13

15 1 6 8 0 5 10 4 11 14 3 9 1

SFC MC

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a

S
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a

+ + + + + + + + 
  + + + + + + + + = → →
  + + + + + + + +
 

+ + + + + +  2 2 7 13a a a

 
 
 
 
 

+ + 

 

 The matix P of linear permutation can be written as the following 16 ×  16 matrix over 
4

16 16
2

F × . It is clear that the characteristic matrix *P  of P equals P. By calculating, * 2( )P  is 

negative, but 
* 3( )P  is positive. So, we get ( )R P  = 3. Similarly, 1( )R P−  = 3. Then we get the 

following conclusion: 
Proposition 3. There is no any more than or equal to 7-round impossible differential of 

64Midoriε . Or equivalently, there is no any 7-round impossible differential of the Midori64 
unless considering the details of the S-boxes. 

In 2016, Chen et al. used the path (0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0) → (0, 0, 0, 0, 0,*, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), a 6-round impossible differential path, to attack 10-round Midori64, 
where 0 denotes zero difference, a and * denote non-zero difference [21]. The impossible 
difference path is consistent with our conclusion in proposition 3. 

 
 

4. Impossible Differentials of the Feistel Structures  
with SP-Type Round Functions 

 
We use the matrix method to ascertain the upper bound of the longest impossible differentials 
of the Feistel Structures with SP-Type Round Functions. 

4.1 An Upper Bound for the Rounds of Impossible Differentials 
The principle to study the Feistel structure with SP-type round functions are almost the 

same as that of the SPN structure(As shown in Fig. 7). 

 
Fig. 7. (2R2(P) + 5)-round differential for SPF  

Definition 3. Let 
2b
n nP F ×∈ , *P  be the characteristic matrix of  P , and  

* 2*
0*

* 2* 1
0

( ) 2*
( )

( ) 2* 1

j i
i

m j i
i

P n j
g P

P n j
=

−
=

 == 
= −

∑
∑

                                     (10)   

Then the smallest integer m is called type 2 primitive index of P, s.t. *( )mg P  is positive. 

For example, if m = 5, then j = 3. Thus *( )mg P  = * 1 * 3 * 5( ) ( ) ( )P P P+ + is a positive matrix, 
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whereas * 0 * 2 * 4( ) ( ) ( )P P P+ +  and * 1 * 3( ) ( )P P+  are not positive matrix. if m = 6, then j = 3. 
Thus * * 0 * 2 * 4 * 6( ) ( ) ( ) ( ) ( )mg P P P P P= + + +  is a positive matrix, whereas 

* 1 * 3 * 5( ) ( ) ( )P P P+ +  and  * 0 * 2 * 4( ) ( ) ( )P P P+ +  are not positive matrix. 
Theorem 2. Let R2(P) be the type 2 primitive indexes of P. Then, there is no any 

independent impossible differential r of ( )r
SPF for 22 ( ) 5r R P≥ + (detailed proof, see 

P12-14[14]). 

4.2 Cryptanalysis of MIBS Cipher 
MIBS [19] is proposed by M.Izadi et al. in CANS 2009. It is a lightweight block cipher with 

64-bit block size and 32-round. MIBS supports two key sizes 64-bit and 80-bit. The 
experimental results show that MIBS has a good performance in constrained resource 
environments such as RFID tags and sensor networks. MIBS is a typical block cipher of the 
Feistel structure and its round function(Fig. 8) includes three steps: 

 

 
Fig. 8. The structure of the block cipher MIBS 

 
(1) addroundkey, the 32-bit Li-1, the left half of the state , is XORed with a 32-bit round key. 
(2) S layer, the nonlinear S -boxes transformations, divides the 32-bit intermediate state into 
eight 4-bit nibbles and puts them into the same eight 4 ×  4 S-boxes. 
(3) P layer, linear transformations layer(with branch number 5). 

Let the 42ib F∈ and 42ic F∈ be the input and output of the P layer, respectively, for i = 
1,…,8. The linear permutations(Fig. 9) is as follows. 

 

 
Fig. 9. The round function of MIBS 
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So, P can be also written 8 ×  8 matrix over 4
8 8

2
F × . P and * 2( )P as followins. 

*

1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 0
1 1 1 0 1 1 0 1
0 1 1 1 0 0 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
1 0 1 1 0 1 1 1

P P

 
 
 
 
 
 = =  
 
 
 
 
  

 ,        
* 2

4 4 5 5 3 3 5 4
4 5 5 4 4 4 3 3
5 4 4 5 5 4 3 4
3 4 5 3 2 4 4 3

( )
4 3 4 4 3 2 3 5
3 4 3 5 4 2 3 3
4 5 3 3 4 4 3 2
5 5 4 4 3 4 4 4

P

 
 
 
 
 
 =  
 
 
 
 
  

 

Obviously, if | (Y) | 1χ = , then | (Z) | 8χ = . In other words, *P  is not a positive matrix, 
however, * 2( )P  is a positive matrix. So, * 2( )P  + I is positive, where I is the identity matrix. 
Then we have 2 ( )R P  = 2 and get the following conclusion: 

Proposition 4. There is no any more than or equal to 9-round ( 2 ( ) 5R P + ) independent 
impossible differential of MIBSε . Or equivalently, there is no any 9-round independent 
impossible differential of the MIBS unless considering the details of the S-boxes. 

In EUROCRYPT 2017, Yu Sasaki and Yosuke Todo presented a new tool searching for 
impossible differentials of MIBS [22]. They found an impossible difference path with a 
maximum of 8 rounds, such as (00000000, 000a0000)->(00000b00, 00000000). The 
impossible difference path is consistent with our conclusion in proposition 4. 

5. Conclusion 
In this paper, we mainly explored the security of structures against impossible differential 

and determined whether there exists an r-round impossible differential of an SPN structure or 
an independent impossible differential of a Feistel structure with SP-type round functions. The 
main factor of influencing impossible differential cryptanalysis is the length of the rounds of 
the impossible differentials because the attack will be more close to the real encryption 
algorithm with the number becoming longer. 

We first analyse Kuznyechik, which is the national standard of the Russian Federation in 
2015, and draw the conclusion that there is no any 3-round impossible differential of the 
Kuznyechik with only considering the linear permutations. 

Although we are only interested in the truncated impossible differentials, we apply the 
matrix to express the linear transformation layer and use the matrix method to quickly 
ascertain the upper bound of the longest impossible differentials for several block ciphers 
ignoring the nonlinear transformations. The matrix method can be extended to many other 
block cipher. 

As a result, we show that, unless considering the details of the S-boxes, there is no any 
3-round, 5-round and 7-round impossible differentials for Kuznyechik, KLEIN and Midori64 
respectively and there is no any 9-round independent impossible differential for MIBS. 
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