DOI QR코드

DOI QR Code

Attention and Attention Shifts of 5th General and Mathematically Gifted Students Based on the Types of Mathematical Patterns

수학 패턴 유형에 따른 5학년 일반학생과 수학영재학생의 주의집중과 주의전환

  • Received : 2018.09.16
  • Accepted : 2018.11.01
  • Published : 2019.01.31

Abstract

This study examined the attention and attention shift of general students and mathematically gifted students about pattern by the types of mathematical patterns. For this purpose, we analyzed eye movements during the problem solving process of 5th general and mathematically gifted students using eye tracker. The results were as follows: first, there was no significant difference in attentional style between the two groups. Second, there was no significant difference in attention according to the generation method between the two groups. The diversion was more frequent in the incremental strain generation method in both groups. Third, general students focused more on the comparison between non-contiguous terms in both attributes. Unlike general students, mathematically gifted students showed more diversion from geometric attributes. In order to effectively guide the various types of mathematical patterns, we must consider the distinction between attention and attention shift between the two groups.

본 연구는 수학 패턴의 유형에 따른 패턴 발견에 대한 일반학생과 수학영재학생의 주의집중과 주의전환을 알아 보았다. 이를 위해 초등학교 5학년 일반학생과 수학영재 학생의 문제해결과정 중의 시선움직임을 시선추적기를 이용하여 분석하였다. 그 결과 첫째, 두 집단 간 표현양식에 따른 주의집중은 유의한 차이가 없었으나 주의전환은 두 집단 모두 숫자 표현양식에서 더 많았다. 둘째, 두 집단간의 생성방식에 따른 주의집중은 유의한 차이가 없었다. 주의전환은 두 집단 모두 증가변형 생성방식에서 더 많았다. 셋째, 일반학생들은 두 속성 모두에서 인접하지 않은 항 간의 비교에 더 많이 집중했다. 일반학생과 다르게 수학영재학생은 기하적 속성에서 주의전환이 더 많았다. 다양한 유형의 수학 패턴을 효과적으로 지도하기 위해서 두 집단 간 주의집중과 주의전환의 차이를 고려해야 할 것이다.

Keywords

SHGHD@_2019_v22n1_1_f0002.png 이미지

[그림 1] AOI 예시 [Fig. 1] AOI examples

[표 1] 수학 패턴 유형 [Table 1] The types of mathematical pattern

SHGHD@_2019_v22n1_1_t0001.png 이미지

[표 2] 수학 패턴 과제 [Table 2] The mathematical pattern tasks

SHGHD@_2019_v22n1_1_t0002.png 이미지

[표 3] ‘숫자반복기하’ 패턴에서 일반학생과 수학영재 학생의 문제 영역 내에서의 시선움직임 평균횟수에 대한 독립표본 t검정 [Table 3] Independent t-test of the average number of eye movement in the problem area for the general students and mathematically gifted students in 'number-repeat-geometrical' pattern

SHGHD@_2019_v22n1_1_t0003.png 이미지

[표 4] ‘그림반복기하’ 패턴에서 일반학생과 수학영재 학생의 문제 영역 내에서의 시선움직임 평균횟수에 대한 독립표본 t검정 [Table 4] Independent t-test of the average number of eye movement in the problem area for the general students and mathematically gifted students in 'picture-repeat-geometrical' pattern

SHGHD@_2019_v22n1_1_t0004.png 이미지

[표 5] ‘반복기하’ 패턴에서 일반학생과 수학영재학생의 패턴 표현양식에 따른 문제 영역 내에서의 시선 역행과 순행횟수 평균 [Table 5] Independent t-test of the average number of pro-saccade and anti-saccade in the problem area of the general students and mathematically gifted students in 'repeat-geometrical' pattern according to expression of pattern

SHGHD@_2019_v22n1_1_t0005.png 이미지

[표 6] ‘숫자반복기하’ 패턴에서 일반학생과 수학영재 학생의 문제 영역 내에서의 시선움직임 평균횟수에 대한 독립표본 t검정 [Table 6] Independent t-test of the average number of eye movement in the problem area for the general students and mathematically gifted students in 'number-repeat-geometrical' pattern

SHGHD@_2019_v22n1_1_t0006.png 이미지

[표 7] '숫자증가변형기하' 패턴에서 일반학생과 수학영재학생의 문제 영역 내에서의 시선움직임 평균횟수에 대한 독립표본 t검정 [Table 7] Independent t-test of the average number of eye movement in the problem area for the general students and mathematically gifted students in 'picture-growth·change-geometrical' pattern

SHGHD@_2019_v22n1_1_t0007.png 이미지

[표 8] ‘숫자기하’ 패턴에서 일반학생과 수학영재학생의 패턴 생성방식에 따른 문제 영역 내에서의 시선 역행과 순행횟수 평균 [Table 8] Independent t-test of the average number of pro-saccade and anti-saccade in the problem area for the general students and mathematically gifted students in 'number-geometrical' pattern according to creation method of pattern

SHGHD@_2019_v22n1_1_t0008.png 이미지

[표 9] ‘그림회전기하’ 패턴에서 일반학생과 수학영재 학생의 문제 영역 내에서의 시선움직임 평균횟수에 대한 독립표본 t검정 [Table 9] Independent t-test of the average number of eye movement in the problem area for the general students and mathematically gifted students of math in 'picture-rotation-geometrical' pattern

SHGHD@_2019_v22n1_1_t0009.png 이미지

[표 10] ‘그림회전물리’ 패턴에서 일반학생과 수학영재학생의 문제 영역 내에서의 시선움직임 평균횟수에 대한 독립표본 t검정 [Table 10] Independent t-test of the average number of eye movement in the problem area for the general students and mathematically gifted students in 'picture-rotation-physical' pattern

SHGHD@_2019_v22n1_1_t0010.png 이미지

[표 11] ‘그림회전’ 패턴에서 일반학생과 수학영재학생의 패턴 속성에 따른 문제 영역 내에서의 시선 역행과 순행횟수 평균 [Table 11] Independent t-test of the average number of pro-saccade and anti-saccade in the problem area for the general students and mathematically gifted students in 'picture-rotation' pattern according to property of pattern

SHGHD@_2019_v22n1_1_t0011.png 이미지

References

  1. Kim, N. G., & Kim, E. S. (2009). A study on the 6th graders' learning algebra through generalization of mathematical patterns. Journal of Korean Society of Mathematics Education Series E, 23(2), 399-428.
  2. Kim, S., & Shin, I. (1997). Teaching mathematical pattern in elementary mathematics. Education of Primary School Mathematics, 1(1), 3-22.
  3. Kim, S. J. (2002). A study on the change of algebra curriculum: Focusing on the introduction of algegra based on patterns. The Journal of Educational Research in Mathematics, 12(3), 353-369.
  4. Kim, S. (2013). Comparing of second graders' patterning understanding between South Korea and the US. Journal of Learner-Centered Curriculum and Instruction, 13(5), 636-660.
  5. Kim, S., Byeon, J., Lee, I., & Kwon, Y. (2012). An eye tracking study on test-item solving of science scholastic achievement focused in elementary school students. Journal of Learner-Centered Curriculum and Instruction, 12(1), 66-78.
  6. Kim, S., Byeon, J., Lee, I., & Kwon, Y. (2013). Development of an instrument to measure task commitment using eye-tracking for identifying science gifted student. Biology Education, 41(3), 421-434. https://doi.org/10.15717/bioedu.2013.41.3.421
  7. Pang, J., & Sunwoo, J. (2016). An analysis on teaching methods of patterns in elementary mathematics textbooks. Education of Primary School Mathematics, 19(1), 1-18. https://doi.org/10.7468/jksmec.2016.19.1.1
  8. Byeon, J., Kim, S., Lee, I., & Kwon, Y. (2013). A study on attention type and shift of task commitment in secondary students' biological classification: Eye-tracking approach. Biology Education, 41(2), 254-266. https://doi.org/10.15717/bioedu.2013.41.2.254
  9. Oh, K., & Kim, S. (1995). The attitude of teachers and parents toward the gifts in science and the behavioral characteristics of science gifted student. Journal of the Korean Association for Research in Science Education, 15(3), 291-302.
  10. Oh, H. (2002). Korean FAIR introduction by Korean standardization research of German FAIR. Seoul: The Central Research Institute for Inimical Character.
  11. Woo, J., & Kim, S. (2007). Analysis of the algebraic thinking factors and search for the direction of its learning and teaching. Journal of Educational Research in Mathematics, 17(4), 453-475.
  12. Yu, M., & Ryu, S. (2013). A comparison between methods of generalization according to the types of pattern of mathematically gifted students and non-gifted students in elementary school. School Mathematics, 15(2), 459-479.
  13. Lee, M., & Kim, A. (2011). Development and validation of attention-concentration ability test for children and adolescent. Korean Journal of Counseling, 12(4), 1391-1411. https://doi.org/10.15703/kjc.12.4.201108.1391
  14. Lee, M., & Na, G. (2012). Examining the students' generalization method in relation with the forms of pattern: Focused on the 6th grade students. School Mathematics, 14(3), 357-375.
  15. Lee, S. (2018). Cognitive load and eye movement of 5th graders according to the types of mathematical patterns. Unpublished master's thesis in Korea National University of Education, Cheongju.
  16. Lee, J., Kang, S., Kim, D., & Hur, H. (2010). Qualitative research on behavioral characteristic of KSA students that appear to observation recording of parents and qualitative admission data by CAQDAS. Journal of Gifted/Talented Education, 20, 427-459.
  17. Choi, B., & Pang, J. (2011). Analysis on the first graders' recognition and thinking about mathematical patterns. Journal of Educational Research in Mathematics, 21(1), 67-86.
  18. Choi, B., & Pang, J. (2012). A comparison of mathematically gifted students' solution strategies of generalizing geometric patterns. Journal of Educational Research in Mathematics, 22(4), 669-636.
  19. Choi, H., Lee, H., & Lee, S. (2007). A study on awareness of patterns by kindergarten and first grade students. The Journal of Korea Open Association for Early Childhood Education, 12(1), 223-240.
  20. Han, M., Kwon, S., & Kwon, Y. (2015). Eye-tracking patterns on visual-search task in of elementary science-gifted and general students. Journal of Learner-Centered Curriculum and Instruction, 15(8), 67-81.
  21. Blair, M. R., Watson, M. R., Walshe, R. C., & Maj, F. (2009). Extremely Selective Attention: Eye-Tracking Studies of the Dynamic Allocation of Attention to Stimulus Features in Categorization. Learning, Memory, 35(5), 1196-1206. https://doi.org/10.1037/a0016272
  22. Day, J., & Stanley, A. D. (1857). An Introduction to Algebra: Being the First Part of a Course of Mathematics, Adapted to the Method of Instruction in the American Colleges. New Haven: Durrie & Peck.
  23. Goodman, P. S., Ravlin, E., & Schminke, M. (1987). Understanding groups in organizations. Research in Organizational Behavior, 9, 121-173.
  24. Locke, E. A., Shaw, K. N., Saari, L. M., & Latham, G. P. (1981). Goal setting and task performance: 1969-1980. Psychological Bulletin, 90(1), 125-152. https://doi.org/10.1037/0033-2909.90.1.125
  25. Mullen, B., & Copper, C. (1994). The relation between group cohesiveness and performance: An integration. Psychological Bulletin, 115, 210-227. https://doi.org/10.1037/0033-2909.115.2.210
  26. Radford, L., & Peirce, C. S. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. In Proceedings of the 28th conference of the international group for the psychology of mathematics education, North American chapter (Vol. 1, pp. 2-21).
  27. Rehder, B., & Hoffman, A. B. (2005a). Eyetracking and selective attention in category learning. Cognitive Psychology, 51(1), 1-41. https://doi.org/10.1016/j.cogpsych.2004.11.001
  28. Rehder, B., & Hoffman, A. B. (2005b). Thirty-something categorization results explained: selective attention, eyetracking, and models of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(5), 811-829. https://doi.org/10.1037/0278-7393.31.5.811
  29. Renzulli, J. S.(1978). What makes giftedness? Reexamining a definition. Phi Delta Kappan, 60(3), 180-184.
  30. Reys, R. E., Lindquist, M., Lambdin, D. V., & Smith, N. L. (2009). Helping children learn mathematics. New York: John Wiley & Sons.
  31. Sternberg, R. J., & Davidson, J. E. (Eds.). (2005). Conceptions of giftedness. New York: Cambridge University Press.
  32. Sweller, J. (1988). Cognitiveload during problemsolving: Effects on learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1207/s15516709cog1202_4

Cited by

  1. 집단지성을 활용한 폴리매스(Polymath) 활동 사례 vol.37, pp.4, 2019, https://doi.org/10.7858/eamj.2021.032