DOI QR코드

DOI QR Code

Mechanical and acoustic behaviors of brine-saturated sandstone at elevated temperature

  • Huang, Yan-Hua (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Yang, Sheng-Qi (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • 투고 : 2018.10.11
  • 심사 : 2019.01.22
  • 발행 : 2019.02.10

초록

The mechanical behavior of rock is essential to estimate the capacity and long-term stability of $CO_2$ storage in deep saline aquifers. As the depth of reservoir increases, the pressure and temperature that applied on the rock increase. To answer the question of how the confining pressure and temperature influence the mechanical behavior of reservoir rock, triaxial compression experiments were carried out on brine-saturated sandstone at elevated temperature. The triaxial compressive strength of brine-saturated sandstone was observed to decrease with increasing testing temperature, and the temperature weakening effect in strength enhanced with the increase of confining pressure. Sandstone specimens showed single fracture failures under triaxial compression. Three typical regions around the main fracture were identified: fracture band, damaged zone and undamaged zone. A function was proposed to describe the evolution of acoustic emission count under loading. Finally, the mechanism of elevated temperature causing the reduction of strength of brine-saturated sandstone was discussed.

키워드

참고문헌

  1. Abdelhedi, M., Aloui, M., Mnif, T. and Abbes, C. (2017), "Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks", Geomech. Eng., 13(3), 371-384. https://doi.org/10.12989/GAE.2017.13.3.371
  2. Bachu, S. (2003), "Sequestration of $CO_2$ in geological media in response to climate change: capacity of deep saline aquifers to sequester $CO_2$ in solution", Energy Convers. Manage., 44(20), 3151-3175. https://doi.org/10.1016/S0196-8904(03)00101-8
  3. Bachu, S. (2008), "$CO_2$ storage in geological media: Role, means, status and barriers to deployment", Prog. Energy Combust. Sci., 34(2), 254-273. https://doi.org/10.1016/j.pecs.2007.10.001
  4. Baud, P., Reuschle, T., Ji, Y., Cheung, C.S.N. and Wong, T. (2015), "Mechanical compaction and strain localization in Bleurswiller sandstone", J. Geophys. Res. Solid Earth, 120(9), 6501-6522. https://doi.org/10.1002/2015JB012192
  5. Beni, A.N. and Clauser, C. (2014), "The influence of temperature on chemical fluid-rock reactions in geological $CO_2$ sequestration", Environ. Model. Assess., 19(4), 315-324. https://doi.org/10.1007/s10666-014-9398-2
  6. Bruant, R., Guswa, A., Celia, M. and Peters, C. (2002), "Safe storage of $CO_2$ in deep saline aquifers", Environ. Sci. Technol., 36(11), 240A-245A. https://doi.org/10.1021/es0223325
  7. Carroll, S.A. and Walther, J.V. (1990), "Kaolinite dissolution at $25^{\circ}$, $60^{\circ}$, and $80^{\circ}C$", Am. J. Sci., 290(7), 797-810. https://doi.org/10.2475/ajs.290.7.797
  8. Carroll, S.A., Mcnab, W.W. and Torres, S.C. (2011), "Experimental study of cement-sandstone/shale-brine-$CO_2$ interactions", Geochem. Trans., 12(1), 9. https://doi.org/10.1186/1467-4866-12-9
  9. Cheng, Y., Wong, L.N.Y. and Maruvanchery, V. (2016), "Transgranular crack nucleation in carrara marble of brittle failure", Rock Mech. Rock Eng., 49(8), 3069-3082. https://doi.org/10.1007/s00603-016-0976-2
  10. Darabi, M.K., Al-Rub, R.K.A. and Little, D.N. (2012), "A continuum damage mechanics framework for modeling microdamage healing", Int. J. Solid. Struct., 49(3-4), 492-513. https://doi.org/10.1016/j.ijsolstr.2011.10.017
  11. Downing, R.A., Allen, D.J., Bird, M.J., Gale, I.N., Kay, R.L.F. and Smith, I.F. (1985), Cleethorpes No. 1 Geothermal Well-A Preliminary Assessment of the Resource: Investigation of the Geothermal Potential of the UK, British Geological Survey.
  12. Dyskin, A.V., Sahouryeh, E., Jewell, R.J., Joer, H. and Ustinov, K.B. (2003), "Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression", Eng. Fract. Mech., 70(15), 2115-2136. https://doi.org/10.1016/S0013-7944(02)00240-0
  13. Fairhurst, C.E. and Hudson, J.A. (1999), "Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression", Int. J. Rock Mech. Min. Sci., 36(3), 279-289. https://doi.org/10.1016/S0148-9062(99)00006-6
  14. Fang, Z. and Harrison, J.P. (2002), "Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions", Int. J. Rock Mech. Min. Sci., 39(4), 459-476. https://doi.org/10.1016/S1365-1609(02)00036-9
  15. Ganor, J., Mogollon, J.L. and Lasaga, A.C. (1995), "The effect of pH on kaolinite dissolution rates and on activation energy", Geochimica Cosmochimica Acta, 59(6), 1037-1052. https://doi.org/10.1016/0016-7037(95)00021-Q
  16. Hall, M.R., Rigby, S.P., Dim, P., Bateman, K., Mackintosh, S.J. and Rochelle, C.A. (2016), "Post-$CO_2$ injection alteration of the pore network and intrinsic permeability tensor for a Permo-Triassic sandstone", Geofluids, 16(2), 249-263. https://doi.org/10.1111/gfl.12146
  17. Hosa, A., Esentia, M., Stewart, J. and Haszeldine, S. (2010), Benchmarking Worldwide $CO_2$ Saline Aquifer Injections, Scottish Centre for Carbon Capture and Storage, Edinburgh, Scotland, U.K.
  18. Huang, Y.H., Yang, S.Q., Hall, M.R., Zhang, Y.C. (2018), "The effects of NaCl concentration and confining pressure on mechanical and acoustic behaviors of brine-saturated sandstone", Energies, 11(2), 385. https://doi.org/10.3390/en11020385
  19. Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures", Theor. Appl. Fract. Mech., 99, 118-130. https://doi.org/10.1016/j.tafmec.2018.11.013
  20. Huang, Y.H., Yang, S.Q., Tian, W.L., Zhao, J., Ma, D. and Zhang, C.S. (2017), "Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment", Arch. Civ. Mech. Eng., 17(4), 912-925. https://doi.org/10.1016/j.acme.2017.03.007
  21. Inada, Y., Kinoshita, N., Ebisawa, A. and Gomi, S. (1997), "Strength and deformation characteristics of rocks after undergoing thermal hysteresis of high and low temperatures", Int. J. Rock Mech. Min. Sci., 34(3-4), 140.
  22. Ingraham, M.D., Bauer, S.J., Issen, K.A. and Dewers, T.A. (2017), "Evolution of permeability and Biot coefficient at high mean stresses in high porosity sandstone", Int. J. Rock Mech. Min. Sci., 96, 1-10. https://doi.org/10.1016/j.ijrmms.2017.04.004
  23. Kachanov, M. (1992), "Effective elastic properties of cracked solids: Critical review of some basic concepts", Appl. Mech. Rev., 45(8), 304-335. https://doi.org/10.1115/1.3119761
  24. Kachanov, M., Tsukrov, I. and Shafiro, B. (1994), "Effective moduli of solids with cavities of various shapes", Appl. Mech. Rev., 47(1S), S151-S174. https://doi.org/10.1115/1.3122810
  25. Kern, H. and Tubia, J.M. (1993), "Pressure and temperature dependence of P-and S-wave velocities, seismic anisotropy and density of sheared rocks from the Sierra Alpujata massif (Ronda peridotites, Southern Spain)", Earth Planet. Sci. Lett., 119(1-2), 191-205. https://doi.org/10.1016/0012-821X(93)90016-3
  26. Korsnes, R.I., Madland, M.V., Austad, T., Haver, S. and Rosland, G. (2008), "The effects of temperature on the water weakening of chalk by seawater", J. Petrol. Sci. Eng., 60(3), 183-193. https://doi.org/10.1016/j.petrol.2007.06.001
  27. Lamy-Chappuis, B., Angus, D., Fisher, Q.J. and Yardley, B.W. (2016), "The effect of $CO_2$-enriched brine injection on the mechanical properties of calcite-bearing sandstone", Int. J. Greenhouse Gas Control, 52, 84-95. https://doi.org/10.1016/j.ijggc.2016.06.018
  28. Liang, W., Yang, X., Gao, H., Zhang, C., Zhao, Y. and Dusseault, M.B. (2012), "Experimental study of mechanical properties of gypsum soaked in brine", Int. J. Rock Mech. Min. Sci., 53,142-150. https://doi.org/10.1016/j.ijrmms.2012.05.015
  29. Lisabeth, H.P. and Zhu, W. (2015), "Effect of temperature and pore fluid on the strength of porous limestone", J. Geophys. Res. Solid Earth, 120(9), 6191-6208. https://doi.org/10.1002/2015JB012152
  30. Liu, B.X., Huang, J.L., Wang, Z.Y. and Liu, L. (2009), "Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression", Chin. J. Rock Mech. Eng., 28(S1), 3234-3234.
  31. Liu, X., Wang, X., Wang, E., Liu, Z. and Xu, X. (2017), "Study on ultrasonic response to mechanical structure of coal under loading and unloading condition", Shock Vib.
  32. Lu, Z.D., Chen, C.X., Feng, X.T. and Zhang, Y.L. (2014), "Strength failure and crack coalescence behavior of sandstone containing single pre-cut fissure under coupled stress, fluid flow and changing chemical environment", J. Central South Univ., 21(3), 1176-1183. https://doi.org/10.1007/s11771-014-2051-z
  33. Masuda, K., Arai, T., Fujimoto, K., Takahashi, M. and Shigematsu, N. (2012), "Effect of water on weakening preceding rupture of laboratory-scale faults: Implications for long-term weakening of crustal faults", Geophys. Res. Lett., 39(1).
  34. Nasvi, M.C.M., Ranjith, P.G., Sanjayan, J., Haque, A. and Li, X. (2014), "Mechanical behaviour of wellbore materials saturated in brine water with different salinity levels", Energy, 66, 239-249. https://doi.org/10.1016/j.energy.2013.12.003
  35. Pei, L., Blocher, G., Milsch, H., Deon, F., Zimmermann, G., Ruhaak, W. and Huenges, E. (2016), "Thermal strain in a watersaturated limestone under hydrostatic and deviatoric stress states", Tectonophysics, 688, 49-64. https://doi.org/10.1016/j.tecto.2016.09.020
  36. Stanchits, S., Vinciguerra, S. and Dresen, G. (2006), "Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite", Pure Appl. Geophys., 163(5-6), 975-994. https://doi.org/10.1007/s00024-006-0059-5
  37. Tang, C.A. (1993), Catastrophe in Rock Unstable Failure, Coal Industry Press, Beijing, China.
  38. Vajdova, V., Baud, P. and Wong, T. (2004), "Permeability evolution during localized deformation in Bentheim sandstone", J. Geophys. Res. Solid Earth, 109(B10).
  39. Vulin, D., Kurevija, T. and Kolenkovic, I. (2012), "The effect of mechanical rock properties on $CO_2$ storage capacity", Energy, 45(1) 512-518. https://doi.org/10.1016/j.energy.2012.01.059
  40. Wang, F., Cao, P., Cao, R.H., Xiong, X.G. and Hao, J. (2018), "The influence of temperature and time on water-rock interactions based on the morphology of rock joint surfaces", Bull. Eng. Geol. Environ., 1-10.
  41. Wu, J., Feng, M., Yu, B. and Han, G. (2017), "The length of preexisting fissures effects on the mechanical properties of cracked red sandstone and strength design in engineering", Ultrasonics, 82, 188-199. https://doi.org/10.1016/j.ultras.2017.08.010
  42. Xu, T., Ranjith, P.G., Wasantha, P.L.P., Zhao, J., Tang, C.A. and Zhu, W.C. (2013), "Influence of the geometry of partiallyspanning joints on mechanical properties of rock in uniaxial compression", Eng. Geol., 167(24), 134-147. https://doi.org/10.1016/j.enggeo.2013.10.011
  43. Yan, C., Deng, J., Cheng, Y., Yan, X., Yuan, J. and Deng, F. (2017), "Rock mechanics and wellbore stability in Dongfang 1-1 gas field in South China Sea", Geomech. Eng., 12(3), 465-481. https://doi.org/10.12989/gae.2017.12.3.465
  44. Yang, S.Q., Huang, Y.H. and Ranjith, P.G. (2018), "Failure mechanical and acoustic behavior of brine saturated-sandstone containing two pre-existing flaws under different confining pressures", Eng. Fract. Mech., 193, 108-121. https://doi.org/10.1016/j.engfracmech.2018.02.021
  45. Yang, S.Q., Tian, W.L. and Huang, Y.H. (2018), "Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code", Geothermics, 72, 124-137. https://doi.org/10.1016/j.geothermics.2017.10.018
  46. Yang, S.Q., Xu, P., Li, Y.B. and Huang, Y.H. (2017), "Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments", Geothermics, 69, 93-109. https://doi.org/10.1016/j.geothermics.2017.04.009
  47. Yu, W.D., Liang, W.G., Li, Y.R. and Yu, Y.M. (2016), "The mesomechanism study of gypsum rock weakening in brine solutions", Bull. Eng. Geol. Environ., 75(1), 359-367. https://doi.org/10.1007/s10064-015-0725-x
  48. Zhou, H., Liu, H., Hu, D., Yang, F., Lu, J. and Zhang, F. (2016), "Anisotropies in mechanical behaviour, thermal expansion and P-wave velocity of sandstone with bedding planes", Rock Mech. Rock Eng., 49(11), 4497-4504. https://doi.org/10.1007/s00603-016-1016-y
  49. Zhou, Z., Cai, X., Ma, D., Chen, L., Wang, S. and Tan, L. (2018), "Dynamic tensile properties of sandstone subjected to wetting and drying cycles", Construct. Build. Mater., 182, 215-232 https://doi.org/10.1016/j.conbuildmat.2018.06.056

피인용 문헌

  1. Experimental and numerical (EFG method) studies on sedimentary rock under varied salinity conditions vol.148, 2021, https://doi.org/10.1016/j.ijrmms.2021.104909