Acknowledgement
Supported by : Kirikkale University
References
- Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008
- ASTM D854-14 (2018), Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, Annual Book of ASTM Standards, ASTM International.
- ASTM D4253-16 (2018), Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, Annual Book of ASTM Standards, ASTM International.
- ASTM D4254-16 (2018), Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, Annual Book of ASTM Standards, ASTM International.
- ASTM D6913 (2018), Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, Annual Book of ASTM Standards, ASTM International.
- Baziar, M.H. and Jafarian, Y. (2007), "Assessment of liquefaction triggering using strain energy concept and ANN model capacity energy", Soil Dyn. Earthq. Eng., 27(12), 1056-1072. https://doi.org/10.1016/j.soildyn.2007.03.007
- Baziar, M.H. Jafarian, Y. Shahnazari, H. Movahed, V. and Tutunchian, M.A. (2011), "Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach", Comput. Geosci., 37(11), 1883-1893. https://doi.org/10.1016/j.cageo.2011.04.008
- Berrill, J.B. and Davis, R.O. (1985), "Energy dissipation and seismic liquefaction of sands: revised model", Soil. Found., 25(2), 106-118. https://doi.org/10.3208/sandf1972.25.2_106
- Bjerrum, L. and Landva, A. (1966), "Direct simple shear tests on a Norwegian quick clay", Geotechnique, 16(1), 1-20. https://doi.org/10.1680/geot.1966.16.1.1
- Boulanger, R.W. and Idriss, I.M. (2012), "Probabilistic standard penetration test-based liquefaction-triggering procedure", J. Geotech. Geoenviron. Eng., 138(10), 1185-1195. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000700
- Carraro, J.A.H., Prezzi, M. and Salgado, R. (2009), "Shear strength and stiffness of sands containing plastic or nonplastic fines", J. Geotech. Geoenviron. Eng., 135(9), 1167-1178. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167)
- Cetin, K.O., Seed, R.B., Der-Kiureghian, A., Tokimatsu, K., Harder Jr, L.F., Kayen, R.E. and Moss, R.E.S. (2004), "Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential", J. Geotech. Geoenviron. Eng., 130(12), 1314-1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)
- Chang, W.J. and Hong, M.L. (2008), "Effects of clay content on liquefaction characteristics of gap-graded clayey sands", Soil. Found., 48(1),101-114. https://doi.org/10.3208/sandf.48.101
- Chen, Y.R. Hsieh, S.C. Chen, J.W. and Shih, C.C. (2005), "Energy-based probabilistic evaluation of soil liquefaction", Soil Dyn. Earthq. Eng., 25(1), 55-68. https://doi.org/10.1016/j.soildyn.2004.07.002
- Cubrinovski, M. Bradley, B.A. Wotherspoon, L., Green, R., Bray, J., Wood, C., Pender, M., Allen, J., Bradshaw, A., Rix, G., Taylor, M., Robinson, K., Henderson, D., Girorgini, S., Ma, K., Winkley, A., Zupan, J., O'Rourke, T., DePascale, G. and Wells, D. (2011), "Geotechnical aspects of the 22 February 2011 Christchurch earthquake", Bull. N. Z. Soc. Earthq. Eng., 44, 205-226. https://doi.org/10.5459/bnzsee.44.4.205-226
- DeAlba, P., Seed, H.B. and Chan, C.K. (1976), "Sand liquefaction in large-scale simple shear tests", J. Geotech. Geoenviron. Eng., 102(GT9), 909-927.
- Dief, H.M. and Figueroa, J.L. (2001), "Liquefaction assessment by the energy method through centrifuge modeling", Proceedings of the NSF International Workshop on Earthquake Simulation in Geotechnical Engineering, Cleveland, Ohio, U.S.A., July,
- Dobry, R., Ladd, R., Yokel, F., Chung, R. and Powell, D. (1982), "Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method", National Bureau of Standards Building Science Series 138, US Department of Commerce, U.S.A.
- Dyvik, R., Berre, T., Lacasse, S. and Raadim, B. (1987), "Comparison of truly undrained and constant volume direct simple shear tests", Geotechnique, 37(1), 3-10. https://doi.org/10.1680/geot.1987.37.1.3
- Fardad, A.P. and Noorzad, R. (2018), "Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing", Soil Dyn. Earthq. Eng., 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026
- Figueroa, J., Saada, A., Liang, L. and Dahisaria, N. (1994), "Evaluation of soil liquefaction by energy principles", J. Geotech. Eng., 120(9), 1554-1569. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1554)
- GDS (2006), Equipment User Manual, GDS Corporation, U.K.
- Green, R.A. (2001), "Energy-based Evaluation and Remediation of Liquefiable Soils", Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.
- Hazirbaba, K. and Rathje, E.M. (2009), "Pore pressure generation of silty sands due to induced cyclic shear strains", J. Geotech. Geoenviron. Eng., 135(12), 1892-1905. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000147
- Ishihara, K. (1985), "Stability of natural deposits during earthquakes", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, California, U.S.A., August
- Ishihara, K. and Yasuda, S. (1975), "Sand liquefaction in hollow cylinder torsion under irregular excitation", Soil. Found., 15(1), 45-59. https://doi.org/10.3208/sandf1972.15.45
- Jafarian, Y. Towhata, I. Baziar, M.H. Noorzad, A. and Bahmanpour, A. (2012), "Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments", Soil Dyn. Earthq. Eng., 35, 13-28. https://doi.org/10.1016/j.soildyn.2011.11.006
- Jafarzadeh, F. and Sadeghi, H. (2012), "Experimental study on dynamic properties of sand with emphasis on the degree of saturation", Soil Dyn. Earthq. Eng., 32(1), 26-41. https://doi.org/10.1016/j.soildyn.2011.08.003
- Kammerer, A. and Pestana, J.M. (2002), "Undrained response of Monterey 0/30 sand under multidirectional cyclic simple shear loading conditions", Technical report University of California, Berkeley, California, U.S.A.
- Kokusho, T. (2013), "Liquefaction potential evaluation: Energybased method comparedto stress-based method", Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, Illinois, U.S.A., April-May.
- Kuerbis, R. and Vaid, Y.P. (1998), "Sand sample preparation: The slurry deposition method", Soil. Found., 28, 107-118. https://doi.org/10.3208/sandf1972.28.4_107
- Law, K.T. Cao, Y.L. and He, G.N. (1990), "An energy approach for assessing seismic liquefaction potential", Can. Geotech. J., 27(3), 320-329. https://doi.org/10.1139/t90-043
- Liang, L. (1995) "Development of an energy method for evaluating the liquefaction potential of a soil deposit", Ph.D. Dissertation, Case Western Reserve University, Cleveland, Ohio, U.S.A.
- Monkul, M.M. Gultekin, C. Gulver, M. Akin, O. and Eseller-Bayat, E, (2015), "Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading", Soil Dyn. Earthq. Eng., 75, 27-36. https://doi.org/10.1016/j.soildyn.2015.03.019
- Moss, R.E.S., Seed, R.B., Kayen, R.E., Stewart, J.P., Der Kiureghian, A. and Cetin, K.O. (2006), "CPT based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential", J. Geotech. Geoenviron. Eng., 132(8), 1032-1051. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032)
- Nemat-Nasser S. and Shokooh A. (1979), "A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing", Can. Geotech. J., 16(4), 659-678. https://doi.org/10.1139/t79-076
- Ostadan, F., Deng, N. and Arango, I. (1996), Energy-Based Method for Liquefaction Potential Evaluation, Phase I. Feasibility Study, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory, Gaithersburg, Maryland, U.S.A.
- Polito, C., Green, R.A., Dillon, E. and Sohn, C. (2013), "Effect of load shape on relationship between dissipated energy", Can. Geotech. J., 50(11), 1118-1128. https://doi.org/10.1139/cgj-2012-0379
- Rokoff, M.D. (1999), "The influence of grain-size characteristics in determining the liquefaction potential of a soil deposit by the energy method", M.Sc. Thesis, Case Western Reserve University, Cleveland, Ohio, U.S.A.
- Seed, H.B. (1980), "Closure to soil liquefaction and cyclic mobility evaluation for level ground during earthquakes", J. Geotech. Eng., 106(6), 724.
- Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found., 97(8), 1249-1274. https://doi.org/10.1061/JSFEAQ.0001662
- Seed, H.B. and Lee, K.L. (1967), "Undrained strength characteristics of cohesionless soils", J. Soil Mech. Found. Div., 93(SM6), 333-360 https://doi.org/10.1061/JSFEAQ.0001059
- Seed, H.B. Idriss, I.M., Makdisi, F. and Banerjee, N. (1975), "Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses", Report No. UCB/EERC-75/29, Earthquake Engineering Research Centre, University of California, Berkeley, California, U.S.A.
- Silver, L.M. and Park, T.K. (1976), "Liquefaction potential rvaluated from cyclic strain-controlled properties tests on sands", Soil. Found., 16(3), 51-65. https://doi.org/10.3208/sandf1972.16.3_51
- Simcock, J., Davis, R.O., Berrill, J.B. and Mallenger, G. (1983), "Cyclic triaxial tests with continuous measurement of dissipated energy", Geotech. Test. J., 6(1), 35-39. https://doi.org/10.1520/GTJ10822J
- Talaganov, K.V. (1996), "Stress-strain transformation and liquefaction of sand", Soil Dyn. Earthq. Eng., 15(7), 411-418. https://doi.org/10.1016/0267-7261(96)00024-3
- Towhata, I. (2008), Geotechnical Earthquake Engineering, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, Germany.
- Towhata, I. and Ishihara, K. (1985), "Shear work and pore water pressure in untrained shear", Soil. Found., 25(3), 73-84. https://doi.org/10.3208/sandf1972.25.3_73
- Walker, B.P. and Whitaker, T. (1967), "An apparatus for forming beds of sands for model foundation tests", Geotechnique, 17(2), 161-167. https://doi.org/10.1680/geot.1967.17.2.161
- Wijewichreme, D. Sriskandakumar, S. and Byrne, P.M. (2005), "Cyclic loading response of loose air-pluviated Fraser River sand for validation of numerical models simulating centrifuge tests", Can. Geotech. J., 42(2), 41-66.
- Wotherspoon, L.M., Orense, R.P. Bradley, B.A., Cox, B.R., Wood, C.M. and Green, R.A. (2015), "Soil profile characterization of Christchurch central business district strong motion stations", Bull. N. Z. Soc. Earthq. Eng., 48(3), 147-157.
- Youd, T.L. and Idriss I.M. (2001), "Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron. Eng., 127(4), 297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)
- Zaheer, A.A., Kamran, A. and Naeem, A.M. (2013), "Liquefaction Potential of Silty Sand in Simple Shear", Mehran Univ. Res. J. Eng. Technol., 32(1), 85-94.
- Zhang, W. and Goh, A.T.C. (2016), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284. https://doi.org/10.12989/gae.2016.10.3.269
- Zhang, W. Goh, A.T.C., Zhang, Y., Chen, Y. and Xiao, Y. (2015), "Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines", Eng. Geol., 188, 29-37. https://doi.org/10.1016/j.enggeo.2015.01.009
Cited by
- Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests vol.24, pp.2, 2019, https://doi.org/10.12989/gae.2021.24.2.105