DOI QR코드

DOI QR Code

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University) ;
  • Fakhar, Ahmad (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University) ;
  • Tabatabaei, Hamidreza (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University)
  • 투고 : 2018.05.21
  • 심사 : 2019.01.13
  • 발행 : 2019.02.10

초록

In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

키워드

참고문헌

  1. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  2. Al-asadi, M.T., Mohammed, H.A., Kherbeet, A.Sh. and Al-aswadi, A.A. (2017), "Numerical study of assisting and opposing mixed convective nanofluid flows in an inclined circular pipe", Int. Commun. Heat Mass Transfer, 85, 81-91. https://doi.org/10.1016/j.icheatmasstransfer.2017.04.015
  3. Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press.
  4. Amabili, M., Karagiozis, K. and Paidoussis, M.P. (2009), "Effect of geometric imperfections on non-linear stability of circular cylindrical shells conveying fluid", Int. J. Non-Linear Mech., 44(3), 276-289. https://doi.org/10.1016/j.ijnonlinmec.2008.11.006
  5. Anish, M., Kanimozhi, B., Ramachandran, S., Jayaprabakar, J. and Beemkumar, N. (2017), "Analysis of heat transfer through a high strength concrete with circular pipe in a safety vessel of reactor vault", Int. J. Amb. Energy, 39(7), 678-684. https://doi.org/10.1080/01430750.2017.1324820
  6. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  7. Bai, L., Lin, G. and Peterson, G.P. (2013), "Evaporative heat transfer analysis of a heat pipe with hybrid axial groove", J. Heat Transfer, 135, 031503 (9 pages). https://doi.org/10.1115/1.4022996
  8. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  9. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  10. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Hassan, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  11. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  12. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702.
  13. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  14. Bessaim, A., Houari, M.S.A. and Tounsi, A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  15. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614.
  16. Bouafia, Kh., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  17. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  18. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  19. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  20. Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transfer, 128, 240-250. https://doi.org/10.1115/1.2150834
  21. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  22. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  23. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016a), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  24. Boylu, F., Dincer, H. and Atesok, G. (2004), "Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries", Fuel Process. Technol., 85, 241-250. https://doi.org/10.1016/S0378-3820(03)00198-X
  25. Chica, J.A. and Morente, F. (2008), "A new model for transient heat transfer model on external steel elements", Steel Compos. Struct., Int. J., 8(3), 201-216. https://doi.org/10.12989/scs.2008.8.3.201
  26. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  27. Colla, L., Fedele, L. and Buschmann, M.H. (2015), "Laminar mixed convection of $TiO_2$-water nanofluid in horizontal uniformly heated pipe flow", Int. J. Therm. Sci., 97, 26-40. https://doi.org/10.1016/j.ijthermalsci.2015.06.013
  28. Chandel, S., Misal, R.D. and Beka, Y.G. (2012), "Convective Heat Transfer through Thick-Walled Pipe", Proced. Eng., 38, 405-411. https://doi.org/10.1016/j.proeng.2012.06.050
  29. Chatterjee, S., Sugilal, G. and Prabhu, S.V. (2018), "Heat transfer in a partially filled rotating pipe with single phase flow", Int. J. Therm. Sci., 125, 132-141. https://doi.org/10.1016/j.ijthermalsci.2017.11.024
  30. Ding, T., Cao, H.W., He, Zh.G. and Li, Zh. (2018), "Visualization experiment on boiling heat transfer and flow characteristics in separated heat pipe system", Experiment. Therm. Fluid Sci., 91, 423-431. https://doi.org/10.1016/j.expthermflusci.2017.10.019
  31. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  32. El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
  33. Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., Int. J., 25(2), 177-186.
  34. Halelfadl, S., Estelle, P., Aladag, B., Doner, N. and Mare, T. (2013), "Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature", Int. J. Therm. Sci., 71, 111-117. https://doi.org/10.1016/j.ijthermalsci.2013.04.013
  35. Hussein, A.M. (2017), "Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger", Experim. Therm. Fluid Sci., 88, 37-45. https://doi.org/10.1016/j.expthermflusci.2017.05.015
  36. Kang, Sh.W., Wang, Y.Ch., Liu, Y.Ch. and Lo, H.M. (2017), "Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe", Appl. Therm. Eng., 126, 1044-1050. https://doi.org/10.1016/j.applthermaleng.2017.02.051
  37. Khanafer, K. and Vafai, K. (2011), "A critical synthesis of thermophysical characteristics of nanofluids", Int. J. Heat Mass Transfer, 54, 4410-4428. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
  38. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402.
  39. Kim, I.G., Kim, K.M., Jeong, Y.Sh. and Bang, I.Ch. (2017), "Flow visualization and heat transfer performance of annular thermosyphon heat pipe", Appl. Therm. Eng., 125, 1456-1468. https://doi.org/10.1016/j.applthermaleng.2017.07.116
  40. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  41. Larbi Chaht, F., Kaci, A., Houari, M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  42. Li, J. and Peterson, G.P. (2011), "3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick", Int. J. Heat Mass Transfer, 54, 564-574. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.014
  43. Li, Ch., Guan, Y., Wang, X., Li, G., Zhou, C. and Xun, Y. (2018), "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy", Energy, 142, 689-701. https://doi.org/10.1016/j.energy.2017.10.056
  44. Maiga, S., Palm, S.J., Nguyen, C.T., Roy, G. and Galanis, N. (2005), "Heat transfer enhancement by using nanofluids in forced convection flows", Int. J. Heat Fluid Flow, 26, 530-546. https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
  45. Massoudi, M. and Johnson, G. (2000), "On the flow of a fluid particle mixture between two rotating cylinders, using the theory of interacting continua", Int. J. Non-Linear Mech., 35, 1045-1058. https://doi.org/10.1016/S0020-7462(99)00078-5
  46. Massoudi, M., Rajagopal, K.R. and Phuoc, T.X. (1999), "On the fully developed flow of a dense particulate mixture in a pipe", Powd. Technol., 104, 258-268. https://doi.org/10.1016/S0032-5910(99)00103-5
  47. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  48. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
  49. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
  50. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  51. Moradi-Dastjerdi, R. and Payganeh, Gh. (2017), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., Int. J., 24(3), 359-367.
  52. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383.
  53. Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S. and Angue Mintsa, H. (2007), "Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon", Int. J. Heat Fluid Flow, 28, 1492-1506. https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
  54. Paak, M., Paidoussisn, M.P. and Misra, A.K. (2014), "Influence of steady viscous forces on the non-linear behaviour of cantilevered circular cylindrical shells conveying fluid", Int. J. Non-Linear Mech., 58, 167-183. https://doi.org/10.1016/j.ijnonlinmec.2013.09.006
  55. Reddy, J.N. (2002), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press.
  56. Saha, G. and Paul, M.C. (2017), "Transition of nanofluids flow in an inclined heated pipe", Int. Commun. Heat Mass Transfer, 82, 49-62. https://doi.org/10.1016/j.icheatmasstransfer.2017.02.017
  57. Sheikhzadeh, G.A., Teimouri, H. and Mahmoodi, M. (2013), "Numerical study of mixed convection of nanofluid in a concentric annulus with rotating inner cylinder", Trans. Phenomen. Nano Micro Scales, 1, 26-36.
  58. Shi, D.L. and Feng, X.Q. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Tech. ASME, 126, 250-270. https://doi.org/10.1115/1.1751182
  59. Shi, Ch., Wang, Y. and Xu, C. (2010), "Experimental study and analysis on heat transfer coefficient of radial heat pipe", J. Therm. Sci., 19, 425-429. https://doi.org/10.1007/s11630-010-0404-y
  60. Sun, Y. and Zhang, X. (2015), "Heat transfer analysis of a circular pipe heated internally with a cyclic moving heat source", Int. J. Therm. Sci., 90, 279-289. https://doi.org/10.1016/j.ijthermalsci.2014.12.009
  61. Vijayakumar, M., Navaneethakrishnan, P., Kumaresan, G. and Kamatchi, R. (2017), "A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids", J. Taiwan Institut. Chem. Eng., 81, 190-198. https://doi.org/10.1016/j.jtice.2017.10.032
  62. White, F. (1986), Fluid Mechanics, McGraw-Hill, New York.
  63. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  64. Zidi, M., Tounsi, A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001