Acknowledgement
Supported by : National Science Foundation China
References
- Ansys (2007), Theory reference manual; Release 11.0, ANSYS Inc., USA.
- Autodesk Inventor (2017), Professional manual; Autodesk Inc., USA.
- AUTODYN (2005), Theory manual revision 4.3; Horsham, Century Dynamics Ltd., UK.
- Codina, R., Ambrosini, D. and Borbon, F. (2016), "Experimental and numerical study of a RC member under a close-in blast loading", Struct. Eng., 127, 145-158. https://doi.org/10.1016/j.engstruct.2016.08.035
- CONWEP (1991), Conventional Weapons Effects Program; US Army Waterways Experiment Station, Vicksburg, MS, USA.
- Hao, H., Ma, G.W. and Zhou, Y.X. (1998), "Numerical simulation of underground explosions", Fragblast Int. J. Blasting Fragment., 2, 383-395.
- Herrmann, W. (1969), "Constitutive equation for the dynamic compaction of ductile porous materials", J. Appl. Phys., 40(6), 2490-2499. https://doi.org/10.1063/1.1658021
- Hu, G., Wu, J. and Li, L. (2016), "Advanced Concrete Model in Hydrocode to Simulate Concrete Structures under Blast Loading", Adv. Civil Eng., 2016, 1-13.
- Johnson, G.R. and Cook, W.H. (1983), "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures", Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, April.
- Li, X., Miao, C., Wang, Q. and Geng, Z. (2016), "Antiknock performance of interlayered high-damping-rubber blast door under thermobaric shock wave", Shock Vib., Article ID 2420893, 9 pages.
- Luccioni, B., Araoz, G. and Labanda, N. (2013), "Defining erosion limit for concrete", Int. J. Protect. Struct., 4(3), 315-355. https://doi.org/10.1260/2041-4196.4.3.315
- Mazek, S.A. (2014), "Performance of sandwich structure strengthened by pyramid cover under blast effect", Struct. Eng. Mech., Int. J., 50(4), 471-486. https://doi.org/10.12989/sem.2014.50.4.471
- Mazek, S. and Mostafa, A. (2013), "Impact of a shock wave on a structure strengthened by rigid polyurethane foam", J. Struct. Eng. Mech., Int. J., 48(4), 569-585. https://doi.org/10.12989/sem.2013.48.4.569
- Nurick, G.N., Langdon, G.S., Chi, Y. and Jacob, N. (2009), "Behaviour of sandwich panels subjected to intense air blast - Part 1: Experiments", Compos. Struct., 91, 433-441. https://doi.org/10.1016/j.compstruct.2009.04.009
- Nystrom, U. and Gylltoft, K. (2009), "Numerical studies of the combined effects of blast and fragment loading", Int. J. Impact Eng., 36(8), 995-1005. https://doi.org/10.1016/j.ijimpeng.2009.02.008
- Nystrom, U. and Gylltoft, K. (2011), "Comparative numerical studies of projectile impacts on plain and steel-fiber reinforced concrete", Int. J. Impact Eng., 38(23), 95-105. https://doi.org/10.1016/j.ijimpeng.2010.10.003
- Prawoto, Y., Ikeda, M., Manville, S.K. and Nishikawa, A. (2008), "Design and failure modes of automotive suspension springs", Eng. Fail. Anal., 15, 1155-1174. https://doi.org/10.1016/j.engfailanal.2007.11.003
- Rashad, M. (2013), "Study the Behavior of Composite Sandwich Structural Panels under Explosion Using Finite Element Method", M.Sc. Thesis; Military Technical College (MTC), Cairo, Egypt.
- Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., Int. J., 27(6), 717-725.
- Rashad, M. and Yang, T.Y. (2019), "Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model", Comput. Concrete, Int. J. [Accepted]
- Riedel, W. (2000), "Beton unter dynamischen Lasten Meso- und makromechanische Modelle und ihre Parameter", Doctoral Thesis; Institut Kurzzeitdynamik, Ernst-Mach-Institut, der Bundeswehr Munchen, Freiburg, Germany. [In German]
- Riedel, W., Thoma, K. and Hiermaier, S. (1999), "Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes", Proceedings of 9th International Symposium on Interaction of The Effect of Munitions with Structures, Berlin-Strausberg, Germany, January.
- Riedel, W., Wicklein, M. and Thoma, K. (2008), "Shock properties of conventional and high strength concrete, experimental and mesomechanical analysis", Int. J. Impact Eng., 35, 155-171. https://doi.org/10.1016/j.ijimpeng.2007.02.001
- Shimozaki, M. (1997), FEM for springs, Nikkan Kogyo Shimbunsha, Japan Society of Spring Engineers. [In Japanese]
- Technical Manual TM5-1300 (1990), Structures to resist the effects of accidental explosions; U.S. Army, USA.
- Tu, Z. and Lu, Y. (2009), "Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations", Int. J. Impact Eng., 36(1), 132-146. https://doi.org/10.1016/j.ijimpeng.2007.12.010
- Tu, Z. and Lu, Y. (2010), "Modifications of RHT material model for improved numerical simulation of dynamic response of concrete", Int. J. Impact Eng., 37(10), 1072-1082. https://doi.org/10.1016/j.ijimpeng.2010.04.004
- UFC 3-340-02 (UNIFIED FACILITIES CRITERIA), (2008), Structures to resist the effects of accidental explosions; U.S. Army corps of engineers, USA.
- Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Rev., 54(3), 201-214. https://doi.org/10.1115/1.3097295
- Wahab, M.M.A. and Mazek, S.A. (2016), "Performance of double reinforced concrete panel against blast hazard", Comput. Concrete, Int. J., 18(6), 807-826. https://doi.org/10.12989/cac.2016.18.6.807
- Wang, G. and Zhang, S. (2014), "Damage prediction of concrete gravity dams subjected to underwater explosion shock loading", Eng. Fail Anal., 39, 72-91. https://doi.org/10.1016/j.engfailanal.2014.01.018
- Wang, W., Zhang, D., Lu, F.Y., Wang, S.C. and Tang, F.J. (2013), "Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion", Eng. Fail. Anal., 27, 41-51. https://doi.org/10.1016/j.engfailanal.2012.07.010
- Wu, C., Hao, H. and Zhou, Y.X. (1999), "Dynamic response analysis of rock mass with stochastic properties subjected to explosive loads", Fragblast Int. J. Blast. Fragment., 3, 137-153.
- Xia, Z., Wang, X., Fan, H., Li, Y. and Jin, F. (2016), "Blast resistance of metallic tube-core sandwich panels", Int. J. Impact Eng., 97, 10-28. https://doi.org/10.1016/j.ijimpeng.2016.06.001
- Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84(5), 431-439. https://doi.org/10.1016/j.compstruc.2005.09.029
- Zhou, X.Q. and Hao, H. (2008), "Numerical prediction of reinforced concrete exterior wall response to blast loading", Adv. Struct. Eng., 11(4), 355-367. https://doi.org/10.1260/136943308785836826
- Zhu, F. (2008), "Impulsive Loading of Sandwich Panels with Cellular Cores", Ph.D. Dissertation; Swinburne University of Technology, Hawthorn, Australia.
Cited by
- Study on the propagation mechanism of blast waves using the ultra-dynamic strain test system vol.28, pp.1, 2019, https://doi.org/10.12989/sss.2021.28.1.143