DOI QR코드

DOI QR Code

Chattering-free sliding mode control with a fuzzy model for structural applications

  • Received : 2018.07.13
  • Accepted : 2018.12.29
  • Published : 2019.02.10

Abstract

This paper proposes a chattering-free sliding mode control (CFSMC) method for seismically excited structures. The method is based on a fuzzy logic (FL) model applied to smooth the control force and eliminate chattering, where the switching part of the control law is replaced by an FL output. The CFSMC is robust and keeps the advantages of the conventional sliding mode control (SMC), whilst removing the chattering and avoiding the time-consuming process of generating fuzzy rule basis. The proposed method is tested on an 8-story shear frame equipped with an active tendon system. Results indicate that the new method not only can effectively enhance the seismic performance of the structural system compared to the SMC, but also ensure system stability and high accuracy with less computational cost. The CFSMC also requires less amount of energy from the active tendon system to produce the desired structural dynamic response.

Keywords

Acknowledgement

Supported by : ARC

References

  1. Adhikari, R. and Yamaguchi, H. (1997), "Sliding mode control of buildings with ATMD", Earthq. Eng. Struct. Dyn., 26(4), 409-422. https://doi.org/10.1002/(SICI)1096-9845(199704)26:4<409::AID-EQE647>3.0.CO;2-0
  2. Askari, M., Li, J. and Samali, B. (2016), "Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms", Smart Struct. Syst., 18(5), 1005-1028. https://doi.org/10.12989/sss.2016.18.5.1005
  3. Baradaran-nia, M., Alizadeh, G., Khanmohammadi, S. and Farahmand Azar, B. (2012), "Optimal sliding mode control of single degree-of-freedom hysteretic structural system", Commun. Nonlin. Sci. Numer. Simulat., 17(11), 4455-4466. https://doi.org/10.1016/j.cnsns.2012.01.008
  4. Fisco, N.R. and Adeli, H. (2011a), "Smart structures: Part I-active and semi-active control", Sci. Iran., 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034
  5. Fisco, N.R. and Adeli, H. (2011b), "Smart structures: Part II-hybrid control systems and control strategies", Sci. Iran., 18(3), 285-295. https://doi.org/10.1016/j.scient.2011.05.035
  6. Ghaffarzadeh, H. and Aghabalaei, K. (2017), "Adaptive fuzzy sliding mode control of seismically excited structures", Smart Struct. Syst., 19(5), 577-585. https://doi.org/10.12989/sss.2017.19.5.577
  7. Gu, X., Yu, Y., Li, Y., Li J., Askari, M. and Samali, B. (2019), "Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control", Mech. Syst. Sign. Proc., 119, 380-398. https://doi.org/10.1016/j.ymssp.2018.10.001
  8. Guclu, R. and Yazici, H. (2008), "Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers," J. Sound Vibr., 318(1-2), 36-49. https://doi.org/10.1016/j.jsv.2008.03.058
  9. Hsiao, F.H., Chen, C.W., Liang, Y.W., Xu, S.D. and Chiang, W.L. (2005), "T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays", T. Circ. Syst. I: Reg. Pap., 25(9), 1883-1893.
  10. Lee, T.Y. and Chen, P.C. (2011), "Experimental and analytical study of sliding mode control for isolated bridges with MR dampers", J. Earthq. Eng., 15(4), 564-581. https://doi.org/10.1080/13632469.2010.524277
  11. Li, Z., Deng, Z. and Gu, Z. (2010), "New sliding mode control of building structure using RBF neural networks", Proceedings of the Chinese Control and Decision Conference, Suzhou, China.
  12. Marian, L. and Giaralis, A. (2017), "The tuned-mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
  13. Ozer, H.O., Hacioglu, Y. and Yagiz, N. (2017), "Controlling the building model using high order sliding mode control optimized by multi objective genetic algorithm", Period. Eng. Nat. Sci., 5(3), 256-262.
  14. Slotine, J.J.E. and Li, W. (1991), Applied Nonlinear Control, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
  15. Solea, R. and Nunes, U. (2007), "Trajectory planning and sliding-mode control based trajectory-tracking for cybercars", Integr. Comput.-Aid. Eng., 14(1), 33-47. https://doi.org/10.3233/ICA-2007-14104
  16. Wang, N. and Adeli, H. (2012), "Algorithms for chattering reduction in system control", J. Frank. Inst., 394(8), 2687-2703. https://doi.org/10.1016/j.jfranklin.2012.06.001
  17. Wu, J.C. and Yang, J.N. (2004), "Modified sliding mode control for wind-excited benchmark problem", J. Eng. Mech., 130(4), 499-504. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(499)
  18. Yakut, O. and Alli, H. (2011), "Neural based sliding mode control with moving sliding surface for the seismic isolation of structures", J. Vibr. Contr., 17(14), 2103-2113. https://doi.org/10.1177/1077546310395964
  19. Yang, J.N., Wu, J.C. and Agrawal, A.K. (1995), "Sliding mode control for nonlinear and hysteretic structures", J. Eng. Mech., 121(12), 1330-1339. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330)
  20. Yang, T.Y., Li, K., Lin, J.Y., Li, Y. and Tung, D.P. (2015), "Development of high-performance shake tables using the hierarchical control strategy and nonlinear control techniques", Earthq. Eng. Struct. Dyn., 44(11), 1717-1728. https://doi.org/10.1002/eqe.2551
  21. Yeganeh Fallah, A. and Taghikhany, T. (2014), "Robust semi-active control for uncertain structures and smart dampers", Smart Mater. Struct., 23(9), 095040.
  22. Yeganeh Fallah, A. and Taghikhany, T. (2015), "A modified sliding mode fault tolerant control for large-scale civil infrastructures", Comput. Aid. Civil Infrastruct. Eng., 31, 550-561. https://doi.org/10.1111/mice.12187
  23. Younespour, A. and Ghaffarzadeh, H. (2016), "Semi-active control of seismically excited structures with variable orifice damper using block pulse functions", Smart Struct. Syst., 18(6), 1111-1123. https://doi.org/10.12989/sss.2016.18.6.1111
  24. Yu, Y., Li, Y., Li, J., Gu, X., Royel, S. and Pokhrel, A. (2016), "Nonlinear and hysteretic modeling of magnetorheological elastomer base isolator using adaptive neuro-fuzzy inference system", Appl. Mech. Mater., 846(6), 258-263. https://doi.org/10.4028/www.scientific.net/AMM.846.258
  25. Yu, Y., Royel, S., Li, J., Li, Y. and Ha, Q. (2016), "Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: Modeling and second-order sliding mode control", Earthq. Struct., 11(6), 943-966. https://doi.org/10.12989/eas.2016.11.6.943