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ON THE DEGENERATE MAXIMAL SPACELIKE SURFACES

Seong-Kowan Hong

Abstract. The purpose of this paper is to investigate various kinds of
degeneracy of maximal surfaces in Ln in view of the generalized Gauss

map.

1. Introduction

There are three important ways in which a maximal surface in Ln may be
degenerate. Many statements that we wish to make hold in full generality
only after certain kinds of degeneracy are excluded. On the other hand, the
degenerate surfaces are of particular interest in itself.

We adopt the notations in [5]. Denote by M a Riemannian surface, and
define a maximal (spacelike) surface S in Ln by an immersion (or embedding)
X : M −→ Ln, where local coordinates u1 , u2 on M serve as isothermal
parameters for the surface and z = u1 + iu2 as a complex coordinate on M .
The Gauss map Φ(z) = (φ1(z), φ2(z), · · · , φn(z)) from M into Qn−2+ is given in
local complex coordinate on M as in [5]. Note that the indefinite Fubini-Study
metric ds2 on CPn−1+ is given by ds2o = π∗ds2. Here π : Cn1 (+) −→ CPn−1+ and

ds2o = 2

∑
j<k εj | zjdzk − zkdzj |2

(−z1z1 + z2z2 + · · · znzn)
2 , (1)

where ε1 = −1, and εj = 1 otherwise.
We adopt terminologies about character of subspace of CPn−1 naturally so

that the image of a spacelike subspace H of Cn1 under the natural projection
π : Cn1 −→ CPn−1 is also called a spacelike subspace of CPn−1, and so on.

2. On the Degenerate Maximal Surfaces

Definition 1. The maximal surface S lies fully in Ln if the image X(M) does
not lie in any proper affine subspace of Ln, and degenerate of the first kind if its
Gaussian image Φ(M) lies fully in a spacelike subspace of CPn−1, degenerate of
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the second kind if its Gaussian image Φ(M) lies fully in a timelike subspace of
CPn−1, degenerate of the third kind if its Gaussian image Φ(M) lies fully in a
null subspace of CPn−1, and is k-degenerate if k is the largest integer such that
the image under Gauss map Φ(M) lies in a projective subspace of codimension k
in CPn−1. The surface S is decomposable if , with respect to some orthonormal
basis in Ln, the functions φj satisfy

−φ21 + φ22 + · · ·φ2k ≡ 0, φ2k+1 + · · ·+ φ2n ≡ 0 (2)

for some k, 1 ≤ k < n, and h-decomposable if h is the smallest number of k
for which (2) holds after suitable change of coordinates. Especially, the com-
posability is called the first kind if −|φ1|2 + |φ2|2 + · · · |φk|2 > 0, the second
kind, otherwise. The Gauss map is said to lie in a real spacelike hyperplane∑
k εkakzk = 0 if the vector A = (a1, · · · , an) may be chosen to be real, time-

like, and lie in a tangent hyperplane if the vector A = (a1, · · · , an) satisfies∑n
k=1 εkak

2 = 0.

Remark 1. S is degenerate of the first kind if there exists a nonzero timelike
vector A = (a1, · · · , an) in Cn1 such that

n∑
j=1

εjajφj ≡ 0 . (3)

Furthermore, S is k-degenerate of the first kind if we can find exactly k-orthonormal
vectors A1, A2, · · · , Ak in Cn1 for which such an equation holds, where A1 is
timelike.

Proposition 2.1. Let S be a maximal surface in Ln, and Ŝ its image under the
Gauss map.

(1) The following statements are equivalent:
(a) S lies fully in a spacelike affine hyperplane of Ln.
(b) S is 1-decomposable (of the second-kind).

(c) S is degenerate with Ŝ lying fully in a real spaceike hyperplane.
(2) If S is 2-decomposable (of the second kind), then S cannot lie fully in

Ln, and S is degenerate, with Ŝ lying in a real null tangent hyperplane.
(3) S is 2-decomposable if and only if there exists a direct a direct sum

decompositions of Ln into L2 ⊕ Rn−2 with respect to which S becomes
the direct sum of a lightlike line in L2 and a minimal surface in Rn−2.

Proof. (1) Suppose S is defined by an immersion X : M −→ Ln. When S
lies fully in a spacelike affine hyperplane of Ln, there is a timelike vector A =
(a1, · · · , an) ∈ Ln such that

n∑
k=1

εkakxk ≡ constant. (4)
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Under an orthonormal change of coordinates so that A = e1, the hyperplane
can be put in the form x̃1 ≡ constant, which is equivalent to φ1 ≡ 0. Hence (a)
is equivalent to (b).

In terms of a local isothermal parameter u = u1 + iu2 on M , we have

xk = Re

∫
φkdu , (5)

in oter words, φk = ∂xk

∂u1 −i∂xk

∂u2 . Hence
∑
εkakφk ≡ 0 if and only if

∑
εkak

∂xk

∂u1 ≡∑
εkak

∂xk

∂u2 ≡ 0 which is equivalent to the statement
∑
εkakxk ≡ constant.

Hence (a) is equivalent to (c).
(2) If S is 2-decomposable, then φ1 ≡ φ2 or φ1 ≡ −φ2. Hence x1 + x2 or

x1 − x2 are constant and S should lie on a null affine hyperplane of Ln. Since
(1, 1, 0, · · · , 0) and (1,−1, 0, · · · , 0) are in Qn−2, clearly S is degenerate, with Ŝ
lying in a real null tangent hyperplane.

(3) This is clear from Theorem 2.2 [6].
�

Before we state the following proposition, we have to mention what the con-
stant Gauss map means. Note the following equivalent statements:

(1) S lies on a plane in Ln.
(2) S has the same tangent plane everywhere.
(3) Gauss map is constant.

(4) φk

φj
= constant for any j, k.

Futhermore, when S is a maximal surface in L3 with K ≡ 0, then the self-adjoint
shape operator Ap : TpM −→ TpM is zero everywhere, which means S is in fact
a portion of a spacelike plane in L3.

The following proposition follows immediately from the above observation
together with Proposition 2.1.

Proposition 2.2. In L3, the following statements are equivalent:

(1) S is 1-decomposable.
(2) S id degenerate of the first kind.
(3) S has a constant Gauss map.
(4) S lies in a spacelike plane.
(5) The Gaussian curvature K vanishes everywhere.

Remark 2. In L3, S cannot be 2-decomposable since −φ21 + φ22 = 0, φ23 = 0
implies −|φ1|2 + |φ2|2 + |φ3|2 = 0, a contradiction to the fact that −|φ1|2 +
|φ2|2 + |φ3|2 > 0.

On the other hand, in either L4 or L5 a decomposable maximal surface must
be degenerate, which can be proved easily.

However, in L6 there exists a decomposable surface that is not degenerate.
Consider the direct sum of a maximal surface X in L3 induced from the Gauss

map Φ(z) =
(
z2+1

2 , z
2−1
2 , z

)
and a minimal surface X̃ in R3 induced from the
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Gauss map Φ̃(z) =
(
z3(1−z4)

2 , iz
3(1+z4)

2 , z5
)

defined on the upper-half plane of

C. Then we can easily see that the corresponding Gauss map Φ, Φ̃ do not
satisfy any nontrivial linear equation of the form

∑
εkakφk +

∑
bkφ̃k ≡ 0.

Let S be an (orientable) spacelike surface defined by an immersion X : M −→
Ln when M is a Riemann surface. Locally we can define the Gauss map by
φ(u) = ∂xk

∂u1 − i∂xk

∂u2 for an isothermal parameter u = u1 + iu2. If v = v1 + iv2 is

another isothermal parameter, then φ̃k(v) = φk(u)dudv , where φ̃(v) = ∂xk

∂v1 − i
∂xk

∂v2 .

Hence φk(u)du = φ̃k(v)dv, which will give us global differentials αk = φk(u)du
on S.

Proposition 2.3. (1) A hyperplane H through the origin in Cn1 is degenerate
if and only if H is defined by a linear equation

z1 =

n∑
k=2

akzk , (6)

where
∑n
k=2 |ak|2 = 1.

(2) H is degenerate hyperplane defined by an equation (6) if and only if there
exists an element in U(1, n − 1) such that H is mapped onto the hyperplane
defined by z1 = z2 under the transformation.

Proof. Degenerate hyperplane H can be decompose into the direct sum Cn−2⊕
span{ξ},where lightlike ξ is orthogonal to the Cn−2, by the modification of
theorem (1.1) [4]. Under a suitable transformation of U(1, n − 1), ξ can be
transformed to (1, 1, · · · , 0). Hence H can be defined by z1 = z2 in Cn1 . �

Remark 3. Every maximal surface in Ln is locally isometric to a complex curve
in Cn1 . Namely, if X : M −→ Ln defines a maximal surface S in isothermal
parameters, and if D is a simply-connected domain in M , then the coordinate
functions xk are harmonic on M . Hence there exist analytic functions fk on D
such that xk = Refk, k = 1, · · · , n. The metric of index 2 induced from Cn1 on
the analytic curve

C :
1√
2

(f1, · · · , fn) (7)

then coincides with the metric on the original surface. To see this, adopt an
isothermal coordinate u = (u1, u2) on D, and compare g

(
∂X
∂ui ,

∂X
∂uj

)
in Ln with

g
(
∂C
∂ui ,

∂C
∂uj

)
in R2n

2 .

If S is isometric to a complex analytic curve lying fully in Cn1 , then 1√
2
(f1, · · · , fn)

coincides with the curve in Cn1 . Therefore, for no (a1, · · · , an) in Cn1∑
εkakfk ≡ constant . (8)

(8) implies the derivative of (f1, f2, · · · , fn), which coincides with the Gaussian
image of S, should lie fully in CPn−1+ .
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Now we turn our attention to the Gauss map of degenerate maximal surfaces
in Ln.

Proposition 2.4. Let S be a maximal surface in Ln which is degenerate of the
first kind. Then there exists an orthonormal basis of Ln with respect to which
the function φk defining the Gauss map in terms of local isothermal parameters
satisfy

φ1 = cφ2 ,∑n
k=3 φ

2
k = (c2 − 1)φ22 ,

(1− |c|2)|φ2|2 +
∑n
k=3 |φk|2 > 0 .

(9)

(In fact, c = it, 0 ≤ t < 1.)
Conversely, given any complex constant c with |c| < 1 and analytic functions

φ1, · · · , φn satisfying (9), the corresponding maximal surface S is degenerate of
the first kind. Its image under the Gauss map lies in the hyperplane z1−cz2 = 0.

Proof. Since Ŝ lies in a spacelike hyperplane
∑n
k=1 εkakzk ≡ 0, where A =

(a1, · · · , an) is timelike, we can find M ∈ SO(1, n−1) such that the hyperplane

can be transformed into z̃1 − cz̃2 = 0 for Z̃ = MZ by Proposition 2.6 [5]. The
conclusion comes immediately from this fact.

Conversely, suppose that φ1, · · · , φn satisfy (9). Then Ŝ lies in a spacelike
hyperplane z1 − cz2 = 0 of CPn−1+ ⊂ CPn−1. Since any subspace that is
included in the hyperplane is also spacelike, S should be degenerate of the the
first kind. �

Proposition 2.5. Let S be a maximal surface in Ln which is degenerate of the
third kind. Then there exists an orthonormal basis of Ln with respect to which
the functions φk defining the Gauss map in terms of local isothermal parameters
satisfy

φ1 = iφ2 ,
2φ22 + φ23 + · · ·+ φ2n = 0 ,∑n
k=3 |φk|2 > 0 ,

(10)

or
φ1 = φ2 ,
φ22 + φ23 + · · ·+ φ2n = 0 ,∑n
k=3 |φk|2 > 0 ,

(11)

Conversely, let φ1, · · · , φn be analytic functions satisfying one of the above.
If there is no timelike vector A ∈ Cn1 satisfying (3), then the corresponding
surface S is a maximal surface which is degenerate of the third kind. Its image
under the Gauss map lies in the hyperplane either z1 − iz2 = 0 or z1 − z2 = 0.

Proof. Since Ŝ lies in a null hyperplane
∑n
k=1 εkakzk ≡ 0, whereA = (a1, · · · , an)

is lightlike, we can find M ∈ SO(1, n−1) such that the hyperplane can be trans-

formed into z̃1 − iz̃2 = 0 or z̃1 − z̃2 = 0 for Z̃ = MZ by Proposition 2.6 [5].
Since the Gaussian image lies in Qn−2+ , direct calculation gives us the conclu-
sion. Conversely, if φ1, · · · , φn satisfy (10) or (11), then (φ1, · · · , φn) lies in a
degenerate hyperplane Hn−1 of Cn1 . The possible subspaces of Hn−1 ⊂ Cn1 are
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Hm or Cm. Since there is no timelike vector A ∈ Cn1 satisfying (3), (φ1, · · · , φn)
cannot lie fully in Cm. Hence S should be degenerate of the third kind. �

Proposition 2.6. Let S be a maximal surface in Ln which is degenerate of the
second kind. Then there exists an orthonormal basis of Ln with respect to which
the functions φk defining the Gauss map in terms of local isothermal parameters
satisfy one of the following :

φn = cφn−1 , |c| ≤ 1 ,∑n−2
k=1 εkφ

2
k = −(1 + c2)φ2n−1 ,∑n−2

k=1 εk|φk|2 + (1 + |c|2)|φn−1|2 > 0 ;

(12)

φ2 = −cφ1 , |c| < 1,∑n
k=3 φ

2
k = (1− c2)φ21 ,∑n

k=3 |φk|2 > (1− |c|2)|φ1|2 ;
(13)

φ3 = i√
2
(φ2 − φ1) ,

−3φ21 + φ22 + 2φ1φ2 + 2
∑n
k=4 φ

2
k = 0 ,

−|φ1|2 + 3|φ2|2 − 2Re(φ1φ̄2) + 2
∑n
k=4 |φk|2 > 0 .

(14)

Conversely, let φ1, · · · , φn be analytic functions satisfying one of the above.
If none of their transformations φ̃1, · · · , φ̃n by the induced SO(1, n− 1) -action
satisfy (9), (10), (11), then the corresponding surface S is a degenerate maximal
surface of the second kind. Its image under the Gauss map lies one of the
hyperplanes given in Proposition (2.6) [5].

Proof. If S is a maximal surface in Ln of the second kind, then Ŝ must lies in
the hyperplane which can be transformed to the hyperplanes in Proposition 2.6
[5] under the SO(1, n− 1)-action. If φ1, · · · , φn satisfy one of the above, then it

is surely degenerate. But the hypothesis tells us that Ŝ cannot lie in a spacelike
or a null hyperplane of CPn−1, which means it cannot be degenerate of the first
or the third kind. �

References

[1] Abe, K. and Magid, M., Indefinite Rigidity of Complex Submanifold and Maximal Sur-

faces, Mathematical Proceedings of Cambridge Philosophical Society 106 (1989), no. 3,

481–494
[2] Akutagawa, K. and Nishigawa, S., The Gauss Map and Spacelike Surfaces with Prescribed

Mean Curvature in Minkowski 3-Space, Tohoku Mathematical Journal 42 (1990), no. 1,
67–82.

[3] Asperti, Antonio C. and Vilhena, Jose Antonio M., Spacelike Surfaces in L4 with De-

generate Gauss Map, Results in Mathematics 60 (2011), no. 1, 185–211.
[4] Graves, L., Codimension One Isometric Immersions between Lorentz Spaces, Ph.D. The-

sis, Brown University, 1977.

[5] Hong, SK., On the Indefinite Quadric Qn−2
+ , East Asian Math. Journal 32 (2016), no. 1,

93–100.

[6] , On the Weierstrass Theorem of a Maximal Spacelike Surface, East Asian Math.

Journal 33 (2017), no. 1, 115–121.



ON THE DEGENERATE MAXIMAL SPACELIKE SURFACES 115

[7] Kobayasi, O., Maximal Surfaces in the 3-dimensional Minkowski Space L3, Tokyo J.
Math. 6 (1983), 297–309.

[8] Milnor, T. K., Harmonic Maps and Classical Surface Theory in Minkowski 3-space,

Trans. of AMS 280 (1983), 161–185.
[9] O’Neil, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.

[10] Osserman, R.,A Survey of Minimal Surfaces, Dover, New York, 1986

Seong-Kowan Hong

Department of Mathematics Education, Pusan National University, Busan, 46241,
Republic of Korea

E-mail address: aromhong@hanafos.com


