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EVALUATION OF THE ZETA FUNCTIONS OF TOTALLY

REAL NUMBER FIELDS AND ITS APPLICATION

Jun Ho Lee

Abstract. In this paper, we are interested in the evaluation of special

values of the Dedekind zeta function of a totally real number field. In

particular, we revisit Siegel method for values of the zeta function of a
totally real number field at negative odd integers and explain how this

method is applied to the case of non-normal totally real number field. As

one of its applications, we give divisibility property for the values in the
special case.

1. Introduction

There are several well known techniques to compute special values at non-
positive integers of the Dedekind zeta functions of totally real number fields.
There are polyhedral and cohomological methods(Shintani[17], Sczech[6]) that
use exact arithmetic, and there are approximate methods(Lavrik-Friedman[3,
19]) that use floating-point arithmetic. Finally, there is a method due to
Siegel[18] that uses the representation of the special values as constant terms
of Eisenstein series, then uses relations among modular forms to find an ex-
plicit formula. However, no matter what method we use, to explicitly compute
the special values is not easy. Zagier[21] gave an elementary expression for
ζK(1 − 2b) by using Siegel method, where K is a real quadratic field and b is
a positive integer. Many authors[4, 8, 10, 12] used Siegel method to compute
special values at negative odd integer of the Dedekind zeta functions of some
cubic, quartic fields. Halbritter and Pohst[7] developed a method of expressing
special values of the partial zeta functions of totally real cubic fields as a finite
sum involving norm, trace, and 3-fold Dedekind sums. Their result has been
exploited by Byeon[1] and Lee[11] to give an explicit formula for the values of
the partial zeta functions of the simplest cubic fields and some non-normal to-
tally real cubic fields. In order to compute the exact value of the Dedekind zeta
function of totally real cubic fields, Louboutin[13] used information on the size
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of its denominator. In this paper, we revisit Siegel method and explain how
this method is applied to the case of non-normal totally real number field.

Now, we follow notations of [12]. Let K be an algebraic number field and
OK the ring of integers of K. For an ideal I of OK , we define the sum of ideal
divisors function σr(I) by

σr(I) =
∑
J|I

NK/Q(J)r, (1)

where J runs over all ideals of OK which divide I. Note that, if K = Q and
I = (n), our definition coincides with the usual sum of divisors function

σr(n) =
∑
d|n
d>0

dr. (2)

Now let K be a totally real algebraic number field. For l, b = 1, 2, . . . , we define

SKl (2b) =
∑
ν∈δ−1

K
ν� 0

TrK/Q(ν)= l

σ2b−1((ν)δK), (3)

where δK is the different of K. Later we shall study the sum (3) intensively.
We just call three conditions in (3)(i.e., ν ∈ δ−1K , ν � 0, TrK/Q(ν) = l) the
Siegel conditions. At this moment, we remark that this is a finite sum. We now
state Siegel’s formula.

Theorem 1.1. (Siegel [18]) Let b be a natural number, K a totally real algebraic
number field of degree n, and h = 2bn. Then

ζK(1− 2b) = 2n
r∑
l=1

bl(h)SKl (2b). (4)

The numbers r ≥ 1 and b1(h), . . . , br(h) ∈ Q depend only on h. In particular,

r = dimCMh, (5)

where Mh denotes the space of modular forms of weight h. Thus by a well-
known formula,

r =

{
[ h12 ] if h ≡ 2 (mod 12)

[ h12 ] + 1 if h ≡/ 2 (mod 12).

Proof. See [18] or [21]. �

Zagier [21] computed the values of bl(h) for 4 ≤ h ≤ 40, and we obtain:

Corollary 1.2. (i) Let K be a totally real cubic number field. Then

ζK(−1) = 23 · (− 1

504
) · SK1 (2). (6)
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(ii) Let K be a totally real quartic number field. Then

ζK(−1) = 24 · 1

480
· SK1 (2). (7)

By Corollary 1.2, for a totally real cubic number field(resp. a totally real
quartic number field), SK1 (2) = −63ζK(−1) (resp. SK1 (2) = 30ζK(−1)) is an
integer.

2. Computation of SK1 (2b)

Let K be a totally real algebraic number field of degree n and SK(or simply
S) be the set of elements in K which satisfy the Siegel conditions described in
(3). Fix an integral basis α1, . . . , αn of K. For ν ∈ K, we can write

ν = x1α1 + · · ·+ xnαn, (8)

where xi ∈ Q. Then we have an embedding φ : K −→ Rn given by

φ(ν) = (x1, . . . , xn). (9)

The condition ν ∈ δ−1K implies that the denominator of xi, i = 1, 2, . . . , n,
is bounded by DK , where DK denotes the discriminant of K. The condition
TrK/Q(ν) = l is equivalent to saying that φ(ν) lies in the hyperplane

a1x1 + · · ·+ anxn = l, (10)

where ai = TrK/Q(αi). Finally the condition ν � 0 becomes n distinct linear
inequalities defined over K in the variables (x1, . . . , xn). Therefore the elements
in SK can be put into one-to-one correspondence with the lattice points in a
bounded (n − 1)-dimensional region under φ. We shall call this set(or any set
which can be put into one-to-one correspondence with this set under a suitable
linear transformation) as a Siegel lattice for K and denote it by TK(or simply
T ). Notice that equation (3) expresses SKl (2b) as a weighted sum of ideal divisor
functions over a Siegel lattice. Hence the description of a Siegel lattice is very
important in the computation of SKl (2b).

Now, we are ready to explain how to compute SKl (2b). First, we need to find
the set of elements in K which satisfy the Siegel conditions described in (3). One
can think that it is a problem to find lattice points in (n−1)-dimensional region
(If it is necessary, we can use a suitable linear transformation giving one-to-one
correspondence). For example, if n is 3(resp. 4), then the set is lattice points
in the region of some triangle(resp. tetrahedron). If K is a Galois extension of
Q, we can find a Siegel lattice more efficiently. In fact, we can check that if ν
is an element in K which satisfy the Siegel conditions described in (3) and σ ∈
Gal(K/Q), then σ(ν) also satisfies the Siegel conditions. Therefore, examining
the movement of ν under Galois action, we can decrease the complexity finding
the Siegel lattice by about a ratio 1/n(cf. [8, 10, 12]). Note that if there exist
no elements fixed under action of Galois group, the number of Siegel lattice
points is multiple of n. After finding lattice points near appropriate boundary,
then we can find the Siegel lattice by looking into movements of conjugates of
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the points. On the other hand, if K is not a Galois extension of Q, we can
not use Galois action. But, by a suitable linear transformation giving one-to-
one correspondence, we can find a good-shape region, which means a region to
easily understand a Siegel lattice. For example, if appropriate boundary of the
region is parallel or close to an axis, it is not difficult to find lattice points in
the region(cf. [4]). This procedure is always available in the case that the ring
of integers OK is known even though K is not Galois extension of Q if n is less
than equal to 4.

Next, we need to investigate the prime ideal decomposition of (ν)δK . Let
N((ν)δK) be the the norm of ideal (ν)δK . If K is a Galois extension of Q,
considering the conjugate of (ν)δK , we can determine the prime ideal decom-
position. For example, if N((ν)δK) = p2 where p is prime, we have the type
of (ν)δK = Q2

1 or (ν)δK = Q1Q2, where Q1, Q2 are prime ideals of OK over
p. One can determine whether (ν)δK = Q2

1 or (ν)δK = Q1Q2 by computing
the product of conjugates of (ν)δK(cf. [10] or [12]). In the case of non-normal
extension of Q, we exactly know prime ideals Q of OK over p as the form of
Z-module by using methods in [15]. Combining the information of the prime
ideals, we have the prime ideal decomposition for (ν)δK . Finally, combining the
results, we can compute SK1 (2b).

3. Divisibility of ζK(−1)

In this section, we discuss the divisibility of ζK(−1). The value is closely re-
lated to Birch-Tate conjecture associated to algebraic K-theory. More explicitly,
the order of tame kernel ]K2OK is related to the value ζK(−1).

Definition 1. (cf. [9]) For any number field K of finite degree over Q and for
n ∈ Z≥0, let wn(K) be as follows:

wn(K) := 2n(2)+1
∏
p

pn(p), n(p) := max{m|[K(ζpm) : K] ≤ n}.

Definition 2. (cf. [9]) For any totally real number field F of finite degree over
Q and for any even integer n ∈ Z≥0, we define

ξn(K) := wn(K)ζK(1− n).

Note that ζK(1− n) ∈ Q is known by Siegel-Klingen, so ξn(K) ∈ Q.

Serre[16] proved the following:

Theorem 3.1. For any totally real number field K, ξ2(K) ∈ Z.

Now, we state Birch-Tate conjecture.

Theorem 3.2. For any algebraic number field K,

]K2OK = w2(K)|ζK(−1)|,

where K2OK is the tame kernel of the ring of integers of K.
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This conjecture is confirmed for any abelian extension K of Q by Mazur and
Wiles([14], [20]). For arbitrary totally real number fields K, the 2-part of the
Birch-Tate conjecture is confirmed by Wiles[20].

There exist the formulas for w2(K)[5]. If we apply the formulas to cyclic
cubic extension K of Q , then we have w2(K) = 24 except two cases[2]:

w2(K) = 3 · 24 for K = Q(ζ9)+,

w2(K) = 7 · 24 for K = Q(ζ7)+.

Since w2(K)ζK(−1) is an integer, for every cyclic cubic number field K, the
value 24ζK(−1) is an integer except two cases Q(ζ9)+,Q(ζ7)+. We see that
Q(ζ7)+ is one of an infinite family of simplest cubic fields. By an argument
after Corollary 1.2, SK1 (2) = −63ζK(−1) is an integer. Therefore, if K is the
simplest cubic field, the value −63ζK(−1) is divisible by 7 except for Q(ζ7)+

and is always divisible by 3. Furthermore, we know that there exist no elements
fixed under action of Galois group in simplest cubic fields(cf. [8]). That means
that −63ζK(−1) is divisible by 3 from a different point of view. Noting that
w2(K) = 24 for non-normal totally real cubic fields, −63ζK(−1) is divisible
by 21 for every non-normal totally real cubic field. Finally, we consider the
simplest quartic field, which defined by the polynomial over Q

Pt(X) = x4 − tx3 − 6x2 + tx+ 1, (11)

where t is a natural number such that t2 + 16 is not divisible by an odd square.
In this case, we have w2(K) = 24 except two cases[12]:

w2(K) = 4 · 24 for t = 4,

w2(K) = 5 · 24 for t = 2, 8.

By a similar argument, for simplest quartic fields, 30ζK(−1) is divisible by 5
except above two cases. Moreover, if t is odd, there exist no elements fixed
under action of Galois group[12]. Therefore, in this case, 30ζK(−1) is divisible
by 20. We summarize the above computation in the following theorem.

Theorem 3.3. (1) If K is the simplest cubic field, the value −63ζK(−1)
is divisible by 7 except for Q(ζ7)+ and is always divisible by 3.

(2) If K is non-normal totally real cubic field, the value −63ζK(−1) is
divisible by 21.

(3) If K is the simplest quartic field, the value 30ζK(−1) is divisible by 5
except two cases. In particular, if K is the simplest quartic field, where
t is odd in (11), the value 30ζK(−1) is divisible by 20.
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