East Asian Math. J.

Vol. 35 (2019), No. 1, pp. 067-075 S YNMS
http://dx.doi.org/10.7858 /eamj.2019.009 O emwmmmem

THE ASYMPTOTIC BEHAVIOUR OF THE AVERAGING
VALUE OF SOME DIRICHLET SERIES USING POISSON
DISTRIBUTION

SIHUN JoO

ABSTRACT. We investigate the averaging value of a random sampling of
a Dirichlet series with some condition using Poisson distribution.

Our result is the following: Let L(s) = Y 22 ; %2 be a Dirichlet series
that converges absolutely for Re(s) > 1. If X; is an increasing random
sampling with Poisson distribution and there exists a number 0 < a < %

such that > an < u®, then we have

EL(1/2 +iX:) = O(t%/logt),
for all sufficiently large ¢ in R.
As a result, we get the behaviour of L(% +it) such that L is a Dirichlet
L-function or a modular L-function, when ¢ is sampled by the Poisson
distribution.

n<u

1. Introduction

The Lindelof Hypothesis is an important conjecture about behaviour of the
Riemann zeta function along the Re(z) = % The conjecture states the absolute
value of ((3 + it) is less than ¢ as t — oo. (cf. [5], [6]) Naturally, the Lindelsf
Hypothesis can be extended other Dirichlet series including Dirichlet L-function
and modular L-function.

In regard to the Lindelof Hypothesis, there are many attempts using proba-
bilitic methods. Lifshits and Weber [4] researched the behaviour of the Riemann
zeta function ¢ (% +it) using the Cauchy random walk. After that, Jo and Yang
[3] researched the behaviour of the Riemann zeta function ((3 + it) using the
Gamma distribution. In the previous paper, Jo [6] studied the behaviour of
the Riemann zeta function ((s) along the critical strip s = 1/2 + it, when t is
sampled by the Poisson distribution.

In this paper, we study the behaviour of Dirichlet series with some conditions
using the Poisson distribution. From this, we get the behaviour of L(3 +it) such
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that L is a Dirichlet L-function or a modular L-function, when t is sampled by
the Poisson distribution.
The following is the main result of this paper.

Theorem 1.1. Let X; denote the Poisson process with E(X;) =t and Var(X;) =
t. Suppose that the Dirichlet series

> a
L(s) = n—z
n=1

converges absolutely for Re(s) > 1. If there exists a number 0 < a < % such
that

A(u) = Z an K u,
n<u

then for all sufficiently large t,

EL(1/2 +iX;) = O(t%/logt).

From this theorem, we have the following corollaries:

Corollary 1.2. Let X; denote the Poisson process with E(X;) =t and Var(X;)
t. And let x be a non-principal Dirichlet character with modulo N and Ly (s)
be the corresponding Dirichlet L-function such that

Ly(s) = 3 M

ns
n=1

Then we have for all sufficiently large t,

EL,(1/2 4 iX;) = O(y/logt).
Corollary 1.3. Let X; denote the Poisson process with E(X;) =t and Var(X;)
t. And let f be a cusp form of weight k over SLy(Z) such that
f(z)= Z a(n)n% exp(2minz)

n=1

and Ly (s) be the corresponding L-function such that

Li(s) =) atn)

nS

n=1

Then we have for all sufficiently large t,

ELf(1/2 4 iX;) = O(t5 \/logt).

Because the Poisson process is increasing with mean value ¢ and its variance
t, we can use this process to explain the behaviour of L(% +it) as t — oo. In this
paper, we use the Landau notation f = O(g), which means that |f(x)| < Cg(z)
for some constant C' and the Vinogradov notation f < g which is equivalent to

f=0(g).
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2. Preliminaries
2.1. Poisson process

The Poisson distribution is the discrete probability distribution of the number
of events that occur in an interval time period.
If the probability mass function of X is given by

the™t
(1) P(Xy=k) = il
for k=0,1,2,---, then we say that a discrete random variable X; has a Poisson

distribution with parameter ¢ > 0.
Using (1), we can get the followings:

2 thet

E(X) =) k o=t
k=0 ’
V(Xy) =E| X — |[EX4)* =t
(2) E(e™Xt) = exp(t(e™ — 1))
(3) E(Xe™Xt) = te™ exp(t(e™ — 1)).

2.2. Dirichlet character and Dirichlet L-function

A Dirichlet character with modulo N is a function x from Z to C with
conditions:

e x(n)=x(n+ N) for all n € Z.
e If gcd(n, N) > 1, then x(n) = 0. If gcd(n, N) = 1, then x(n) # 0.
o x(mn) = x(m)x(n) for all m,n € Z.

A Dirichlet character x with modulo N is called principal character if x(n) =
1 for all n € Z such that ged(n, N) = 1.
Note that if x is a non-principal character with modulo N, then

(4) > xla) =0.

A Dirichlet L-function is a function of the following form: for Re(s) > 1,

Ly(s) = Z X(n)’

nS

n=1

where x is a Dirichlet character. By analytic continuation, L, (s) can be ex-
tended to whole complex plane and if  is a non-principal character, then L, (s)
can be extended to an entire function.
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2.3. Holomorphic cusp form

A holomorphic cusp form of weight k& on

- })

is a complex-valued function f on $ = {z € C | Im(z) > 0} satisfying the
following conditions:

a,b,c,dGZ,adbcl}

e f is a holomorphic function on §.

e For any z € § and ( CCL Z ) € SLy(Z), we have
az+b\ &
(25) = e+ atre.

e f is holomorphic and goes to zero as z — ico.
Let f be a cusp form of weight k over SLo(Z) such that

o0

flz) = Z a(n)n% exp(2minz).

n=1

It is well known that the corresponding L-function

ns
n=1

converges absolutely for Re(s) > 1. And for the partial sum Ay(u) =" _, a(n),
we have a bound -

(5) Af(u) < ud
by Hafner and Ivié [1].
3. Proof of Theorem
We start the following lemma about partial sum.

Lemma 3.1. Suppose that the Dirichlet series

o0

L= o

n=1

an

converges absolutely for Re(s) > 1. If there exists a number 0 < a < 1 such

that
= Z an, < u”,

n<u

then L(s) can be extended to Re(s) > a as follows:

—s/ A(u)u™" Ldu.
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Proof. Note that

M
/_ 2 dA(z) = [A@)a™]) — [ A(@)d(z)

1-

= AM) +s/1M A(z)z™ 5 Hdz.

Ms

Therefore we have

— = s/ A(x)r* "tz
1

for Re(s) > 1. If Re(s) > «, then

o0 1
A —s—1 —Re(s)+a—1 — )
/ de < /1 * de Re(s) — a

Hence L(s) can be extended to Re(s) > a. O
Proof of Theorem 1.1. By Lemma 3.1, (2) and (3), we have
EL(1/2 + iX;)

=E ((1/2 +iXy) /100 A(u)u—lﬂ—ixt—ldu)

= 1/m A(u)u= 3B (0" du +¢/°o A(u)u™3?B(Xu~ ) du
= / A(u /2 exp(t(u~ ))du + zt/ Alw)u™? > exp(t(u™ — 1))du
=: A+ B.
First, we estimate the integral A.
Note that
(6) exp(t(u™" —1)) = exp (t(cos(log u) — 1 —isin(log u)))
Because

lexp(t(u™" — 1))| = exp (t(cos(log u) — 1)) <1,
we have that

A== / A(u)u=3/? exp(t(u~ —1))du=o(/looua—§du):0(1).

Second, we consider the integral B.
Note that

08 (@) =1- % (@)2 +O((logt)2/t2)



exp <t (cos (@) — 1)) = exp (; (\/2\2?; + O((logt)z/t)>

::exp(—logt)(1—%()(Oogt)2/t))

:%+0Qbyﬁﬁﬂ.

Suppose that, for m € Z,

V2logt
8 < |logu — 2mm| < 7.
Vi
Then, for a = logu — 2rm, we have 0 < cosa < cos ( v 2\2@). Therefore we

have

exp (t (cos (logu) — 1)) = exp (¢ (cos (2rm + ) — 1)) = exp (¢t (cosa — 1))

< exp (t (cos (‘/W) - 1>> = % + O((logt)2/t2>.

Vit
From (6), we have | exp(t(u="—1))| = exp (¢ (cos (logu) — 1)). Hence, for m € Z,
if
V2logt
o8 < |logu —2mm| <,
Vit

then
(7) lexp(t(u™" — 1)) <t
Let

oo

\/W}
S = u€eER |[u>1, |[logu—2mm| < .
U { > 1, log <22

m=0

We divide B into two parts.

B :it/ Alw)u™?* P exp(t(u™ — 1))du + it/ Alw)u™?* P exp(t(u™ — 1))du
s R
= Bl —|— E‘7
where R = [1,00) — S.

case 1) We consider the integral for R. From (7), we can get

E= it/RA(u)u*?’/zfi exp(t(u™" —1))du = O <t /100 u”‘gidu> =0(1).

case 2) The integral for S is the following:
e2wm+\/m

i —3/2—i —i_
B, zth:l/ezﬂm S A(u)u exp(t(u 1))du.
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We divide B; into two parts as following:

e2mmty/2logt/t

_ -3/2—i —i_
B; =it Z /%m_ N Au)u exp(t(u 1))du
m< 21 logt
e2mmty/2log t/t
ity Aw)u=3? T exp(t(u™ — 1))du

e2mm—y/2log t/t

m> ﬁ logt

=: My + M.

First, we calculate the integral Ms.

e2mm+y/2log t/t
Vogt
My<t > u Py <t Y eI g
e2mm—y/2logt/t

mZilogt mZﬁlogt

S

< t%y/logt.

Next, we calculate the integral M.
We divide M into the following:

e2ﬂm+m
- A —3/2—i —i_q
it Z JyE—— (u)u exp(t(u ))du
m< ﬁlogt :
2wrrt+\/m]
=it Z Aw)u™? > exp(t(u™" — 1))du
[e2mm— 210g1/1
m< 21 logt
627rm+\/m
+ it Z A(u)u=3* " exp(t(u™" — 1))du
[627rm+ 2logt/t]
m< i logt

e?wm,—\/m
—1 —3/2—i —i
o Z (2 /TR 177 A(u)u exp(t(u 1))du

m< 5= logt
=: Ml,l + E+ + E~.

From an integration by parts using the equation

(8) % exp(t(u™ — 1)) = —iexp(t(u=" — 1)) tu"""1,
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we get
e27r1n+\/m
Et = it( Z a(n)) / w32 exp(t(u”t — 1))du
[

n<[e2rm+/2lost/t] etV IE ]
e2mm+/2log t/t
< te?mme / ‘ w2 exp(t(ut — 1))du
[e2mm+y/2log t/E]
< tezmma € (2a—1)mm

Similarly, we have E~ < e(o—1mm,
Using (8), we have
[e2mm+V/2logt/t] g .
My =it A<k)/ w2 exp(t(u™t — 1))du
k[ /TR E77] k
[e2mm+V/2logt/t]

u—1/2; , k+1
=it Z A(k) [ " exp(t(u™" — 1))}
k:[e%rm—\/m] k
k+1 u—3/2 ,
+i/ exp(t(u™" —1))du
. 2t

[ezmer\/m]il 1
<t Z k"‘k © < eatDTm VY log?

k:[e27rm—\/2logt/t]

t N

From these facts, we have

Viogt
M, < Z <6(2a+1)7rm\;gg+26(2a1)77m) < t° qut.

m<i10gt
Because My < t*y/logt, we have
Bl = Ml + MQ < to‘\/logt.

Hence, from case 1 and case 2, we can get B < t*y/logt.
Therefore we can know

EL(1/2 +iX,;) < t%y/logt

and the proof is complete.

Proof of Corollary 1.2. From (4), we know
| > xm)| <.

n<u
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By Theorem 1.1, we have

EL,(1/2 4+ 1X;) = O(y/logt).

O
Proof of Corollary 1.3. From (5), we know
Af(u) = Z a(n) < us.
n<u
By Theorem 1.1, we have
EL;(1/2 +iX;) = O(t5/logt).
d
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