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THE ASYMPTOTIC BEHAVIOUR OF THE AVERAGING

VALUE OF SOME DIRICHLET SERIES USING POISSON
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Sihun Jo

Abstract. We investigate the averaging value of a random sampling of

a Dirichlet series with some condition using Poisson distribution.
Our result is the following: Let L(s) =

∑∞
n=1

an
ns

be a Dirichlet series

that converges absolutely for Re(s) > 1. If Xt is an increasing random

sampling with Poisson distribution and there exists a number 0 < α < 1
2

such that
∑
n≤u an � uα, then we have

EL(1/2 + iXt) = O(tα
√

log t),

for all sufficiently large t in R.

As a result, we get the behaviour of L( 1
2

+ it) such that L is a Dirichlet
L-function or a modular L-function, when t is sampled by the Poisson

distribution.

1. Introduction

The Lindelöf Hypothesis is an important conjecture about behaviour of the
Riemann zeta function along the Re(z) = 1

2 . The conjecture states the absolute

value of ζ( 1
2 + it) is less than tε as t→∞. (cf. [5], [6]) Naturally, the Lindelöf

Hypothesis can be extended other Dirichlet series including Dirichlet L-function
and modular L-function.

In regard to the Lindelöf Hypothesis, there are many attempts using proba-
bilitic methods. Lifshits and Weber [4] researched the behaviour of the Riemann
zeta function ζ( 1

2 + it) using the Cauchy random walk. After that, Jo and Yang

[3] researched the behaviour of the Riemann zeta function ζ( 1
2 + it) using the

Gamma distribution. In the previous paper, Jo [6] studied the behaviour of
the Riemann zeta function ζ(s) along the critical strip s = 1/2 + it, when t is
sampled by the Poisson distribution.

In this paper, we study the behaviour of Dirichlet series with some conditions
using the Poisson distribution. From this, we get the behaviour of L( 1

2 +it) such
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that L is a Dirichlet L-function or a modular L-function, when t is sampled by
the Poisson distribution.

The following is the main result of this paper.

Theorem 1.1. Let Xt denote the Poisson process with E(Xt) = t and Var(Xt) =
t. Suppose that the Dirichlet series

L(s) =

∞∑
n=1

an
ns

converges absolutely for Re(s) > 1. If there exists a number 0 < α < 1
2 such

that

A(u) =
∑
n≤u

an � uα,

then for all sufficiently large t,

EL(1/2 + iXt) = O(tα
√

log t).

From this theorem, we have the following corollaries:

Corollary 1.2. Let Xt denote the Poisson process with E(Xt) = t and Var(Xt) =
t. And let χ be a non-principal Dirichlet character with modulo N and Lχ(s)
be the corresponding Dirichlet L-function such that

Lχ(s) =

∞∑
n=1

χ(n)

ns
.

Then we have for all sufficiently large t,

ELχ(1/2 + iXt) = O(
√

log t).

Corollary 1.3. Let Xt denote the Poisson process with E(Xt) = t and Var(Xt) =
t. And let f be a cusp form of weight k over SL2(Z) such that

f(z) =

∞∑
n=1

a(n)n
k−1
2 exp(2πinz)

and Lf (s) be the corresponding L-function such that

Lf (s) =

∞∑
n=1

a(n)

ns
.

Then we have for all sufficiently large t,

ELf (1/2 + iXt) = O(t
1
3

√
log t).

Because the Poisson process is increasing with mean value t and its variance
t, we can use this process to explain the behaviour of L( 1

2 +it) as t→∞. In this
paper, we use the Landau notation f = O(g), which means that |f(x)| ≤ Cg(x)
for some constant C and the Vinogradov notation f � g which is equivalent to
f = O(g).
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2. Preliminaries

2.1. Poisson process

The Poisson distribution is the discrete probability distribution of the number
of events that occur in an interval time period.

If the probability mass function of X is given by

P (Xt = k) =
tke−t

k!
(1)

for k = 0, 1, 2, · · · , then we say that a discrete random variable Xt has a Poisson
distribution with parameter t > 0.

Using (1), we can get the followings:

E(Xt) =

∞∑
k=0

k
tke−t

k!
= t

V (Xt) = E|Xt|2 − |EXt|2 = t

E(eiuXt) = exp(t(eiu − 1))(2)

E(Xte
iuXt) = teiu exp(t(eiu − 1)).(3)

2.2. Dirichlet character and Dirichlet L-function

A Dirichlet character with modulo N is a function χ from Z to C with
conditions:

• χ(n) = χ(n+N) for all n ∈ Z.
• If gcd(n,N) > 1, then χ(n) = 0. If gcd(n,N) = 1, then χ(n) 6= 0.
• χ(mn) = χ(m)χ(n) for all m,n ∈ Z.

A Dirichlet character χ with modulo N is called principal character if χ(n) =
1 for all n ∈ Z such that gcd(n,N) = 1.
Note that if χ is a non-principal character with modulo N , then

N∑
a=1

χ(a) = 0.(4)

A Dirichlet L-function is a function of the following form: for Re(s) > 1,

Lχ(s) =

∞∑
n=1

χ(n)

ns
,

where χ is a Dirichlet character. By analytic continuation, Lχ(s) can be ex-
tended to whole complex plane and if χ is a non-principal character, then Lχ(s)
can be extended to an entire function.
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2.3. Holomorphic cusp form

A holomorphic cusp form of weight k on

SL2(Z) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
is a complex-valued function f on H = {z ∈ C | Im(z) > 0} satisfying the
following conditions:

• f is a holomorphic function on H.

• For any z ∈ H and

(
a b
c d

)
∈ SL2(Z), we have

f

(
az + b

cz + d

)
= (cz + d)kf(z).

• f is holomorphic and goes to zero as z → i∞.

Let f be a cusp form of weight k over SL2(Z) such that

f(z) =

∞∑
n=1

a(n)n
k−1
2 exp(2πinz).

It is well known that the corresponding L-function

Lf (s) =

∞∑
n=1

a(n)

ns

converges absolutely for Re(s) > 1. And for the partial sumAf (u) =
∑
n≤u a(n),

we have a bound

Af (u)� u
1
3(5)

by Hafner and Ivić [1].

3. Proof of Theorem

We start the following lemma about partial sum.

Lemma 3.1. Suppose that the Dirichlet series

L(s) =

∞∑
n=1

an
ns

converges absolutely for Re(s) > 1. If there exists a number 0 < α < 1 such
that

A(u) =
∑
n≤u

an � uα,

then L(s) can be extended to Re(s) > α as follows:

L(s) = s

∫ ∞
1

A(u)u−s−1du.



THE ASYMPTOTIC BEHAVIOUR OF SOME DIRICHLET SERIES 71

Proof. Note that

M∑
n=1

an
ns

=

∫ M

1−
x−sdA(x) =

[
A(x)x−s

]M
1−
−
∫ M

1−
A(x)d(x−s)

=
A(M)

Ms
+ s

∫ M

1

A(x)x−s−1dx.

Therefore we have

∞∑
n=1

an
ns

= s

∫ ∞
1

A(x)x−s−1dx

for Re(s) > 1. If Re(s) > α, then∫ ∞
1

A(x)x−s−1dx�
∫ ∞
1

x−Re(s)+α−1dx =
1

Re(s)− α
.

Hence L(s) can be extended to Re(s) > α. �

Proof of Theorem 1.1. By Lemma 3.1, (2) and (3), we have

EL(1/2 + iXt)

= E
(

(1/2 + iXt)

∫ ∞
1

A(u)u−1/2−iXt−1du

)
=

1

2

∫ ∞
1

A(u)u−3/2E(u−iXt)du+ i

∫ ∞
1

A(u)u−3/2E(Xtu
−iXt)du

=
1

2

∫ ∞
1

A(u)u−3/2 exp(t(u−i − 1))du+ it

∫ ∞
1

A(u)u−3/2−i exp(t(u−i − 1))du

=: A+B.

First, we estimate the integral A.
Note that

exp(t(u−i − 1)) = exp
(
t
(

cos(log u)− 1− i sin(log u)
))
.(6)

Because

| exp(t(u−i − 1))| = exp
(
t
(

cos(log u)− 1
))
≤ 1,

we have that

A =
1

2

∫ ∞
1

A(u)u−3/2 exp(t(u−i − 1))du = O

(∫ ∞
1

uα−
3
2 du

)
= O(1).

Second, we consider the integral B.
Note that

cos

(√
2 log t√
t

)
= 1− 1

2

(√
2 log t√
t

)2

+O
(

(log t)2/t2
)
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and

exp

(
t

(
cos

(√
2 log t√
t

)
− 1

))
= exp

(
− t

2

(√
2 log t√
t

)2

+O
(

(log t)2/t
))

= exp(− log t)
(

1 +O
(

(log t)2/t
))

=
1

t
+O

(
(log t)2/t2

)
.

Suppose that, for m ∈ Z,
√

2 log t√
t
≤ | log u− 2πm| ≤ π.

Then, for α = log u − 2πm, we have 0 ≤ cosα ≤ cos
(√

2 log t√
t

)
. Therefore we

have

exp (t (cos (log u)− 1)) = exp (t (cos (2πm+ α)− 1)) = exp (t (cosα− 1))

≤ exp

(
t

(
cos

(√
2 log t√
t

)
− 1

))
=

1

t
+O

(
(log t)2/t2

)
.

From (6), we have | exp(t(u−i−1))| = exp (t (cos (log u)− 1)). Hence, for m ∈ Z,
if √

2 log t√
t
≤ | log u− 2πm| ≤ π,

then

| exp(t(u−i − 1))| � t−1.(7)

Let

S =

∞⋃
m=0

{
u ∈ R

∣∣∣∣ u ≥ 1, | log u− 2πm| <
√

2 log t√
t

}
.

We divide B into two parts.

B =it

∫
S

A(u)u−3/2−i exp(t(u−i − 1))du+ it

∫
R

A(u)u−3/2−i exp(t(u−i − 1))du

=: B1 + E,

where R = [1,∞)− S.
case 1) We consider the integral for R. From (7), we can get

E = it

∫
R

A(u)u−3/2−i exp(t(u−i − 1))du = O

(
t

∫ ∞
1

uα−
3
2

1

t
du

)
= O(1).

case 2) The integral for S is the following:

B1 = it

∞∑
m=1

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

A(u)u−3/2−i exp(t(u−i − 1))du.
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We divide B1 into two parts as following:

B1 = it
∑

m< 1
2π log t

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

A(u)u−3/2−i exp(t(u−i − 1))du

+ it
∑

m≥ 1
2π log t

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

A(u)u−3/2−i exp(t(u−i − 1))du

=: M1 +M2.

First, we calculate the integral M2.

M2 � t
∑

m≥ 1
2π log t

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

uα−3/2du� t
∑

m≥ 1
2π log t

e−(1−2α)πm
(√

log t√
t

)
� tα

√
log t.

Next, we calculate the integral M1.
We divide M1 into the following:

it
∑

m< 1
2π log t

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

A(u)u−3/2−i exp(t(u−i − 1))du

= it
∑

m< 1
2π log t

∫ [e2πm+
√

2 log t/t]

[e2πm−
√

2 log t/t]

A(u)u−3/2−i exp(t(u−i − 1))du

+ it
∑

m< 1
2π log t

∫ e2πm+
√

2 log t/t

[e2πm+
√

2 log t/t]

A(u)u−3/2−i exp(t(u−i − 1))du

− it
∑

m< 1
2π log t

∫ e2πm−
√

2 log t/t

[e2πm−
√

2 log t/t]

A(u)u−3/2−i exp(t(u−i − 1))du

=: M1,1 + E+ + E−.

From an integration by parts using the equation

d

du
exp(t(u−i − 1)) = −i exp(t(u−i − 1))tu−i−1,(8)
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we get

E+ = it

( ∑
n≤[e2πm+

√
2 log t/t]

a(n)

)∫ e2πm+
√

2 log t/t

[e2πm+
√

2 log t/t]

u−3/2−i exp(t(u−i − 1))du

� te2πmα
∫ e2πm+

√
2 log t/t

[e2πm+
√

2 log t/t]

u−3/2−i exp(t(u−i − 1))du

� te2πmα
e−πm

t
= e(2α−1)πm.

Similarly, we have E− � e(2α−1)πm.
Using (8), we have

M1,1 = it

[e2πm+
√

2 log t/t]−1∑
k=[e2πm−

√
2 log t/t]

A(k)

∫ k+1

k

u−3/2−i exp(t(u−i − 1))du

= it

[e2πm+
√

2 log t/t]−1∑
k=[e2πm−

√
2 log t/t]

A(k)

([
u−1/2i

t
exp(t(u−i − 1))

]k+1

k

+ i

∫ k+1

k

u−3/2

2t
exp(t(u−i − 1))du

)

� t

[e2πm+
√

2 log t/t]−1∑
k=[e2πm−

√
2 log t/t]

kα
k−

1
2

t
� e(2α+1)πm

√
log t√
t
.

From these facts, we have

M1 �
∑

m< 1
2π log t

(
e(2α+1)πm

√
log t√
t

+ 2e(2α−1)πm
)
� tα

√
log t.

Because M2 � tα
√

log t, we have

B1 = M1 +M2 � tα
√

log t.

Hence, from case 1 and case 2, we can get B � tα
√

log t.
Therefore we can know

EL(1/2 + iXt)� tα
√

log t

and the proof is complete. �

Proof of Corollary 1.2. From (4), we know∣∣∣∑
n≤u

χ(n)
∣∣∣ ≤ N.
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By Theorem 1.1, we have

ELχ(1/2 + iXt) = O(
√

log t).

�

Proof of Corollary 1.3. From (5), we know

Af (u) =
∑
n≤u

a(n)� u
1
3 .

By Theorem 1.1, we have

ELf (1/2 + iXt) = O(t
1
3

√
log t).

�

References
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