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POLYNOMIAL INVARIANTS OF LONG VIRTUAL KNOTS

Young Ho Im∗ and Sera Kim

Abstract. We introduce a family of polynomial invariants by using inter-
section index defined from a Gauss diagram of a long virtual knot, and we

give some properties for long virtual knots. We extend these polynomials

so that we give two-variable polynomial invariants and some example.

1. Introduction

Kauffman introduced virtual knot theory as a generalization of classical knot
theory in the sense that if two classical knot diagrams are equivalent as virtual
knots, then they are equivalent as classical knots [7]. Similarly, a long virtual
knot diagram is an oriented infinitely long line in R2 which possibly has some
encircled crossings without over/under information, called virtual crossings. A
long virtual knot is the equivalence class of such a long virtual knot diagram by
generalized Reidemeister moves, which consist of (classical) Reidemeister moves
of type R1, R2 and R3 and virtual Reidemeister moves of type V R1, V R2, V R3

and the semivirtual move V R4 as shown in Figure 1.
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Figure 1. Generalized Reidemeister moves
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Henrich [2] introduced a polynomial invariant for virtual knots which vanishes
for classical knots. Later, Im, Lee and Lee [5] extended it to an invariant of
virtual links so that it is called the index polynomial. And Jeong [6] defined
the another invariant from index polynomial by using classical crossings with
zero intersection index. It is called the zero polynomial. Later, Im and Kim [3]
introduced the zero polynomial and nth polynomial for a Gauss diagram of a
virtual knot.

In this paper, we introduce a sequence of n-th polynomials of long virtual
knots for each nonnegative integer n. It is organized as follows. In Section 2,
we define the zero polynomial and n-th polynomial of long virtual knots and
investigate some properties of these polynomials. In Section 3, we obtain two
variable polynomials of long virtual knots.

2. A family of the n-th polynomials for long virtual knots

We begin this section with basic definitions and results which are needed
throughout this paper.

Definition 1. A long virtual knot diagram D is a smooth immersion f : R→ R2

such that
(1) there is a real number r so that f(x) = (x, 0) for any real number x and

|x| > r;
(2) each intersection point is double and transverse;
(3) each intersection point is endowed with classical (with a choice for un-

derpass and overpass specified) or virtual crossing structure.

Definition 2. A long virtual knot is an equivalence class of long virtual knot
diagrams modulo generalized Reidemeister moves in Figure 1.

Turaev [9] announced pointed virtual knot diagrams equivalent to long virtual
knot diagrams, which are mapped onto virtual knot diagrams.

Figure 2. A long virtual knot diagram vs. a pointed virtual
knot diagram

Two pointed virtual knot diagrams are said to be stably homeomorphic if
there is an orientation preserving homeomorphism of regular neighborhoods
of the underlying curves, sending the first diagram onto the second one and
preserving the point, the orientation, and the over/under-crossing information.
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Definition 3. [9] Two pointed virtual knot diagrams are stably equivalent if
they can be related by a finite sequence of the following transformations:

(1) Stable homeomorphism
(2) The generalized Reidemeister moves on a knot diagram in its surface

away from the point.

For the set K of stable equivalence classes of pointed virtual knot diagrams
and the set L of long virtual knots, it is immediate that there is a one-to-one
correspondence between K and L up to isotopy. Then we define a Gauss diagram
of a long virtual knot diagram as a pointed Gauss diagram of a pointed virtual
knot diagram.

A Gauss diagram for a virtual knot diagram consists of a counter-clockwise
oriented circle S1 together with signed, oriented m chords connecting 2m points
on S1. Since the preimages of the overcrossing and the undercrossing of the
virtual knot diagram are connected by a chord directed from the preimage of
the overcrossing which is called the tail to the preimage of the undercrossing
which is called the head in a circle with an counter-clockwise orientation, we
assign a sign to each chord according to the sign of the corresponding real
crossing of the virtual knot diagram. For each chord c of G, we assign the signs
of endpoints of the chord c so that we assign sign(c)(−sign(c)) to the tail(head)
of c, respectively.

c c

sign(c) = 1 sign(c) = -1

Figure 3. The sign of a crossing c

Let D be a long virtual knot diagram. Then there is a pointed virtual knot
diagram Ḋ corresponding to D. We call the point of Ḋ the infinity in this
paper. The Gauss diagram G(Ḋ) of Ḋ has the point corresponding to the

infinity of Ḋ and the counterclockwise orientation in Figure 4 corresponding to
the orientation of Ḋ. Then the Gauss diagram G(D) of D can be defined as the

pointed Gauss diagram G(Ḋ). The point of G(Ḋ) as shown in Figure 4 is also
called the infinity.

Figure 4. The infinity of the pointed Gauss diagram G(D)
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Remark 1. In [10], Polyak proved all oriented Reidemeister moves are generated
by the following four oriented Reidemeister moves Ia, Ib, IIa, IIIa shown in
Figure 5.

I I II III→← → →ab aa

Figure 5. Oriented Reidemeister moves for virtual knot diagrams

Consider the corresponding Reidemeister moves Ia, Ib, IIa, IIIa and IIIa′ in
Gauss diagrams [1] shown in Figure 6. These moves which avoid the neighbor-
hood of the infinity are applied to pointed Gauss diagrams. Two pointed Gauss
diagrams are equivalent if one can be transformed to the other by finitely many
moves in Figure 6.
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Figure 6. Reidemeister moves Ia, Ib, IIa, IIIa and IIIa′ for
pointed Gauss diagrams

From the above one-to-one correspondence, the polynomial invariant defined
for pointed Gauss diagrams is also an invariant for long virtual knot diagrams.
Then we focus on the polynomial invariants for pointed Gauss diagrams.

Let G be a pointed Gauss diagram and let c be a chord of G. From the
computation of intersection indices for long virtual knots [4], we introduce the
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lead side of the chord c on G. In Figure 7, the chord c divides the circle of G
into two arcs. The lead side of the chord c is the arc containing the infinity. We
denote the collection of endpoints except those of c on the lead side of a chord
c by L(c). Then the intersection index of c is the sum of signs of endpoints in
L(c). It is denoted by ind(c).

c
the lead side of 

the chord c

Figure 7. The lead side of the chord c

Let G be a pointed Gauss diagram and let C(G) be the set of chords of G.
Define a subset of C(G) for each non-negative integer n as

Cn(G) = {c ∈ C(G)|ind(c) = kn for some integer k}.

Definition 4. Let G be a pointed Gauss diagram and let c be a chord of Cn(G).
For a non-negative integer n, the dn-function for c denoted by dn(c) is defined
as the sum of signs of endpoints in L(c) whose chords belong to Cn(G). We
define the n-th polynomial Zn

G ∈ Z[t±1] for G as

Zn
G(t) =

∑
c∈Cn(G)

sign(c)(tdn(c) − 1).

Remark 2. Z1
G(t) is the original index polynomial for a pointed Gauss diagram

G.

Then we have the following main result.

Theorem 2.1. If G and G′ are equivalent pointed Gauss diagrams, then Zn
G(t) =

Zn
G′(t) for each non-negative integer n.

Proof. By mimicking the proof of Theorem 3.3 [3], we can get the result.
Suppose that the number of chords in G is less than or equal to the number

of chords in G′. First, we consider the case that G′ is obtained from G by
applying a single Ia-move. Let c be a new chord of G′. As we see in Figure 6,
we have ind(c) = 0 and the chord related to c does not meet with any other
chord of Zn(G′). Therefore, we obtain dn(c) = 0 and

Zn
G′(t) = Zn

G(t) + sign(c)(tdn(c) − 1) = Zn
G(t).

For an Ib-move, its result is the same as before.
Second, we consider the case that G′ is obtained from G by applying a single

IIa-move. Let a and b be the two new chords of G′. Since a and b have
the same indices, either a, b ∈ Cn(G′) or a, b /∈ Cn(G′). If a, b /∈ Cn(G′),
then Zn

G(t) = Zn
G′(t). Otherwise, endpoints in L(a) whose chords belong to
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Cn(G′) are the same as the ones in L(b) whose chords belong to Cn(G′). Thus,
dn(a) = dn(b). Since the sign of a is different from the sign of b,

Zn
G′(t) = Zn

G(t) + sign(a)(tdn(a) − 1) + sign(b)(tdn(b) − 1) = Zn
G(t).

Finally we consider the case that G′ is obtained from G by applying a single
IIIa-move in Figure 6.

Let c1, c2 and c3 be chords of G in the process of IIIa-move. We denote the
corresponding three chords of G′ by c′1, c

′
2 and c′3. It is known that the indices of

ci and c′i are the same for i = 1, 2, 3. On both sides of the IIIa-move, we obtain
ind(c1) − ind(c2) + ind(c3) = 0 (ind(c′1) − ind(c′2) + ind(c′3) = 0), respectively
[1]. Thus, if these three chords of G are not in Cn(G), then the result follows
immediately. Otherwise, either only one chord belongs to Cn(G) or all of them
belong to Cn(G). In both cases, we can check that dn-values of crossings are
not changed and the conclusion follows.

Similarly, for the case of an IIIa′ -move, it is the same proof as IIIa-move.
Since the intersection index is not changed from virtual Reidemeister moves

and semivirtual move, the result is true. �

Definition 5. Let D be a long virtual knot diagram and G(D) be a corre-
sponding pointed Gauss diagram. The nth polynomial of D is defined by

Zn
D(t) := Zn

G(D)(t).

Example 2.2. Let D be a long virtual knot diagram and G(D) be the corre-
sponding Gauss diagram in Figure 8. By the computation, we get i(a) = −1,
i(b) = 0, i(c) = −1 and i(d) = 0 for each chord of G(D). Then, Z1

G(D)(t) is

zero, but for chords {b, d} with zero indices, we have d0(b) = d0(d) = 1.
Therefore, the zero polynomial is Z0

G(D)(t) = 2(t− 1), D is non-trivial.

a

b
c

d
a

bc

d

D G D

cd

a

b

Figure 8. The nontrivial example in Zn
D(t)

For a pointed Gauss diagram G, −G is the pointed Gauss diagram with the
clockwise oriented circle S1 which is called the inverse of G, while keeping the
orientation and the sign of each chord. If G and −G represent the same pointed
Gauss diagrams, then G is said to be invertible.
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For a pointed Gauss diagram G, we denote by G∗ the pointed Gauss diagram
obtained by changing both the orientation and the sign of all chords of G while
keeping the orientation of the circle S1 of G. G∗ is called the mirror image of
G. If G and G∗ represent the same pointed Gauss diagrams, then the Gauss
diagram G is called amphicheiral.

Proposition 2.3. Let G be a pointed Gauss diagram and −G be a inverse of
G. Then Zn

−G(t) = Zn
G(t) for each non-negative integer n.

Proof. Since −G is obtained from G by reversing the orientation, for a chord
c of G and the corresponding chord c′ of −G, ind(c) = ind(c′) as Figure 9.
Thus, we get dn(c) = dn(c′) for each c ∈ Cn(G) and the corresponding chord
c′ ∈ Cn(−G). As a consequence, we have Zn

−G(t) = Zn
G(t) for each non-negative

integer n.
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Figure 9

�

Proposition 2.4. Let G be a pointed Gauss diagram and G∗ be a mirror image
of G. Then Zn

G∗(t) = −Zn
G(t−1) for each non-negative integer n.

Proof. Following the proof of Proposition 2.3, for a chord c of G and the corre-
sponding chord c′ of G∗, ind(c) = −ind(c′) but sign(c) = −sign(c′) as Figure
10. Then, we have Zn

G∗(t) = −Zn
G(t−1) for each non-negative integer n.
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Figure 10

�

Remark 3. Let D be a long virtual knot diagram, −D be a inverse of D where
−D is obtained from D by changing the orientation of D, and D∗ be a mirror
image of D. Then Zn

D(t) = Zn
−D(t) = −Zn

D∗(t
−1).
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Example 2.5. In Example 2.2, the long virtual knot diagram D is cheiral by
Proposition 2.4.

3. A sequence of two variable polynomials for long virtual knots

In this section, we obtain a sequence of the two-variable polynomials by using
early overcrossings and early undercrossings for a long virtual knot diagram.

Definition 6. [8] Let D be a long virtual knot diagram and let c be a classical
crossing of D. Then c is called an early overcrossing (early undercrossing) of D
if the over arc (under arc) of c appears earlier than the under arc (over arc) of
c along the orientation of D, respectively.

Then in a pointed Gauss diagram G, we define the early overchord c (early
underchord) if the over (under) information of c appears earlier than the under
(over respectively) information along the counterclockwise orientation from the
infinity of G. We denote the set of early overchords of G (early overcrossings of
D) by O(G) (O(D)) and the set of early underchords of G (early undercrossings
of D) by U(G) (U(D)) for a pointed Gauss diagram G (a long virtual knot
diagram D). Then we consider the 2-variable n-th polynomial for pointed Gauss
diagrams (long virtual knot diagrams), respectively.

Definition 7. Let G be a pointed Gauss diagram. Then we define a two-
variable n-th polynomial for each non-negative integer n as

Zn
G(t1, t2) =

∑
c∈Cn(G)∩O(G)

sign(c)(t
dn(c)
1 − 1) +

∑
c∈Cn(G)∩U(G)

sign(c)(t
dn(c)
2 − 1).

For a long virtual knot diagram D and a corresponding pointed Gauss di-
agram G(D), a two-variable n-th polynomial of D is defined by Zn

D(t1, t2) :=
Zn
G(D)(t1, t2) for non-negative integer n.

We have the following result.

Theorem 3.1. For two equivalent pointed Gauss diagrams G and G′, Zn
G(t1, t2) =

Zn
G′(t1, t2).

Proof. Suppose that G′ is obtained from G by applying a single Polyak’s Rei-
demeister move [10] and the number of chords of G is less than or equal to the
number of chords of G′.

For the Ia or Ib-move, we have a ∈ O(G′) or b ∈ U(G′). Then we follow the
proof as the one of Theorem 2.1.

For an IIa-move, let a and b be new chords of G′. If a and b both are not in
Cn(G′), the result is obtained. Otherwise, either a, b ∈ O(G′) or a, b ∈ U(G′) in
Figure 6. If a, b ∈ Cn(G′)∩O(G′), we get sign(a) = −sign(b) and dn(a) = dn(b).
Therefore,

Zn
G′(t1, t2) = Zn

G(t1, t2) + sign(a)(t
dn(a)
1 − 1) + sign(b)(t

dn(b)
1 − 1) = Zn

G(t1, t2).
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If a, b ∈ Cn(G′) ∩ U(G′),

Zn
G′(t1, t2) = Zn

G(t1, t2) + sign(a)(t
dn(a)
2 − 1) + sign(b)(t

dn(b)
2 − 1) = Zn

G(t1, t2).

For an IIIa-move, let c1, c2 and c3 be chords of G in the process of the
IIIa-move and c′1, c′2 and c′3 be the corresponding chords of G′. It ci is in O(G)
(U(G)) for any i = 1, 2, 3, then c′i is in O(G) (U(G) respectively). The the
conclusion follows immediately.

Similarly, for the case of an IIIa′ -move, it is the same proof as IIIa-move.
Since the intersection index is not changed from virtual Reidemeister moves

and semivirtual move, the result is true. �

The two-variable polynomials have some properties for the inverses and mir-
ror images of pointed Gauss diagrams.

Proposition 3.2. Let G be a pointed Gauss diagram and −G be a inverse of
G. Then Zn

−G(t1, t2) = Zn
G(t2, t1) for each non-negative integer n.

Proof. Since −G has the reversed orientation from G, the set of early overchords
and the set of early underchords of G are interchanged. The conclusion follows.

�

Proposition 3.3. Let G be a pointed Gauss diagram and G∗ be a mirror image
of G. Then Zn

G∗(t1, t2) = −Zn
G(t−12 , t−11 ) for each non-negative integer n.

Proof. Following the proof of Proposition 2.4 and 3.2, the result is obtained. �

Finally we give an example of a non-trivial long virtual knot which can be
recognized by a two variable polynomial although it cannot be found by any
n-th one variable polynomial for any non-negative integer n.

Example 3.4. Let D be a long virtual knot diagram in Figure 11.
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c

d

D G D

Figure 11. The nontrivial example in Zn
D(t1, t2)

Since ind(a) = 2, ind(b) = 2, ind(c) = −2, and ind(d) = −2, we get Zn
G(t) =

0 for any non-negative integer n. But since we have a, c ∈ O(D) and b, d ∈
U(D), two variable 2-nd polynomial Z2

D(t1, t2) is −t21 − t−21 + t22 + t−22 .
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Therefore, D is non-trivial and non-invertible.
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