Table 2.1
References
- A. Alaca, S. Alaca, M. F. Lemire, and K. S. Williams, Nineteen quaternary quadratic forms, Acta Arith. 130 (2007), no. 3, 277-310.
- A. Alaca, S. Alaca, M. F. Lemire, and K. S. Williams, The number of representations of a positive integer by certain quaternary quadratic forms, Int. J. Number Theory 5 (2009), no. 1, 13-40. https://doi.org/10.1142/S1793042109001943
-
A. Alaca, S. Alaca, and K. S. Williams, On the quaternary forms
$x^2+y^2+z^2+5t^2$ ,$x^2+y^2+5z^2+5t^2$ and$x^2+5y^2+5z^2+5t^2$ , JP J. Algebra Number Theory Appl. 9 (2007), no. 1, 37-53. - A. Alaca and J. Alanazi, Representations by quaternary quadratic forms with coefficients 1, 2, 7 or 14, Integers 16 (2016), Paper No. A55, 16 pp.
- B. C. Berndt, Number Theory in the Spirit of Ramanujan, Student Mathematical Library, 34, American Mathematical Society, Providence, RI, 2006.
-
B. Gordon and D. Sinor, Multiplicative properties of
${\eta}$ -products, in Number theory, Madras 1987, 173-200, Lecture Notes in Math., 1395, Springer, Berlin, 1989. - C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829. Reprinted in Gesammelte Werke Vol. 1, Chelsea, New York, 1969, 49-239.
- L. J. P. Kilford, Modular Forms: A Classical and Computational Introduction, second edition, Imperial College Press, London, 2015.
-
H. D. Kloosterman, On the representation of numbers in the form
$ax^2+by^2+cz^2+dt^2$ , Proc. London Math. Soc. (2) 25 (1926), 143-173. https://doi.org/10.1112/plms/s2-25.1.143 - G. Kohler, Eta Products and Theta Series Identities, Springer Monographs in Mathematics, Springer, Heidelberg, 2011.
- G. Ligozat, Courbes modulaires de genre 1, Societe Mathematique de France, Paris, 1975.
-
J. Liouville, Sur les deux formes
$x^2+y^2+2(z^2+t^2)$ , J. Math. Pures Appl. 5 (1860), 269-272. -
J. Liouville, Sur les deux formes
$x^2+y^2+z^2+2t^2$ and$x^2+2(y^2+z^2+t^2)$ , J. Math. Pures Appl. 6 (1861), 225-230. -
J. Liouville, la forme
$x^2+y^2+z^2+5t^2$ , J. Math. Pures Appl. 9 (1864), 1-12. -
J. Liouville, la forme
$x^2+5(y^2+z^2+t^2)$ , J. Math. Pures Appl. 9 (1864), 17-22. -
J. Liouville, la forme
$x^2+y^2+5z^2+5t^2$ , J. Math. Pures Appl. 10 (1865), 1-8. - G. Lomadse, Uber die Darstellung der Zahlen durch einige quaternare quadratische Formen, Acta Arith. 5 (1959), 125-170. https://doi.org/10.4064/aa-5-2-125-170
- K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004.
- W. Stein, Modular Forms, a Computational Approach, Graduate Studies in Mathematics, 79, American Mathematical Society, Providence, RI, 2007.
-
K. S. Williams, On the representations of a positive integer by the forms
$x^2+y^2+z^2+2t^2$ and$x^2+2y^2+2z^2+2t^2$ , Int. J. Mod. Math. 3 (2008), no. 2, 225-230. - K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge University Press, Cambridge, 2011.