References
- Bergstra, J. & Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, pp.281-305.
- Furukawa, Y., Kijima, K. & Ibaragi, H., 2004. Development of automatic course modification system using fuzzy inference. International Federation of Automatic Control Proceedings, 37(10), pp.77-82.
- Jeong, J.S., 2015. Korean e-Navigation goal and government plan. Telecommunications Technology Association Journal, 159, pp.20-27.
- Kijima, K. & Furukawa, Y., 2002. Development of collision avoidance algorithm using fuzzy inference. Proceedings of ISOPE Pacific/Asia Offshore Mechanics Symposium, pp.123-130.
- Kijima, K. & Furukawa, Y., 2003. Automatic collision avoidance system using the concept of blocking area. International Federation of Automatic Control Proceedings, 36(21), pp.223-228.
- Kijima, K. & Nakiri, Y., 2003. On the practical prediction method for ship manoeuvring characteristics. Transaction of the West-Japan Society of Naval Architects, 105, pp.21-31.
- Kim, D.J. & Kwak, S.Y., 2011. Evaluation of human factors in ship accidents in the domestic sea. Journal of the Ergonomics Society of Korea, 30(1), pp.87-98. https://doi.org/10.5143/JESK.2011.30.1.87
- Korean Maritime Safety Tribunal, 2017, Current situation of causes of maritime accidents by type of accident [online] Available at: https://www.kmst.go.kr/kmst/statistics/annualReport/selectAnnualReportList.do [Accessed 21 May 2018].
- Kose, K., Hirono, K., Sugano, K. & Sato, I., 1998. A new collision-avoidance-supporting-system and its application to coastal-cargo-ship "SHOYO MARU". IFAC Proceeding, 31, 263-268.
- Lee, H.J. & Rhee, K.P., 2001. Development of collision avoidance system by using expert system and search algorithm. International Shipbuilding Progress, 48, pp.197-212.
- Lee, W.W., Yang, H.R., Kim, K.W., Lee, Y.M. & Lee, U.R., 2017. Reinforcement Learning with Python and Keras. Wikibook.
- Li, Y., 2017. Deep Reinforcement Learning: An Overview. arXiv preprint arXiv:1701.07274.
- Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. & Wierstra, D., 2016. Continuous control with deep reinforcement learning. International Conference on Learning Representations, 1509.02971.
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M., 2013. Playing Atari with Deep Reinforcement Learning. Neural Information Processing Systems, Lake Tahoe, USA, 9 December 2013.
- Mori, S., 1995. Note of Ship Form Design(24). FUNE-NO-KAGAKU, 48, pp.40-49.
- Ota, D., Masuyama, T., Furukawa, Y. & Ibaragi, H., 2016. Development of automatic collision avoidance system for ships using reinforcement learning. Proceedings of 7th PAAMES and AMEC2016, Hong Kong, 13-14 October 2016.
- Shim, W.S., Park, J.W. & Lim, Y.K., 2010. The study on the trend of international standards and the domestic plan to cope with e-navigation. Journal of the Korea Institute of Information and Communication Engineering, 14(5), pp.1057-1063. https://doi.org/10.6109/jkiice.2010.14.5.1057
- Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Graepel, T., Lillicrap T., Leach, M., Kavukcuoglu, K. & Hassabis, D., 2016. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), pp.484-489. https://doi.org/10.1038/nature16961
- Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. & Riedmiller, M., 2014. Deterministic policy gradient algorithms. International Conference on Machine Learning, 32, pp.387-395.
- Son, N.S., Furukawa, Y., Kim, S.Y. & Kijima, K., 2009. Study on the collision avoidance algorithm against multiple traffic ships using changeable action space searching method. Journal of the Korean Society for Marine Environmental Engineering, 12(1), pp.15-22.
- Van, S.H., 2007. Planning research for development of core technologies for smart ship. KORDI Report No. UCPM0147A-42-7.