References
- Terao J, Kawai Y, Murota (2008) Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17: 291-293
- Kim MJ, Kim BG, Ahn JH (2013) Biosynthesis of bioactive Omethylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97: 7195-7204 https://doi.org/10.1007/s00253-013-5020-9
- Peterson J, Dwyer J (1998) Taxonomic classification helps identify flavonoid-containing foods on a semiquantitative food frequency questionnaire. J Am Diet Assoc 98: 677-682 https://doi.org/10.1016/S0002-8223(98)00153-9
- Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91: 949-956 https://doi.org/10.1007/s00253-011-3449-2
- Kim BG, Sung SH, Chong Y, Lim Y, Ahn JH (2010) Plant flavonoid Omethyltransferase: substrate specificity and application. J Plant Biol 53: 321-329 https://doi.org/10.1007/s12374-010-9126-7
- Wang X (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583: 3303-3309 https://doi.org/10.1016/j.febslet.2009.09.042
- Maria L. Falcone Ferreyra, Sebastian P. Rius, Paula Casati (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3(222): 1-15
- Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8: 281-290 https://doi.org/10.1089/jmf.2005.8.281
- Jose Justino (2017) Flavonoids: From biosynthesis of human health. InTechOpen 371-391
- Schmidt AW, Reddy KR, Knolker HJ (2012) Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem Rev: 112: 3193-3328 https://doi.org/10.1021/cr200447s
- Souza AB, Martins CH, Souza MG, Furtado NA, Heleno VC, de Sousa JP, Rocha EM, Bastos JK, Cunha WR, Veneziani RC, Ambrosio SR (2011) Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother Res 25: 215-220 https://doi.org/10.1002/ptr.3244
- Xiao J, Ni X, Kai G, Chen X (2013) A review on structure-activity relationship of dietary polyphenols inhibiting a-amylase. Crit Rev Food Sci Nutr 53: 497-506 https://doi.org/10.1080/10408398.2010.548108
- Stachulski AV, Meng X (2013) Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat Prod Rep 30: 806-848 https://doi.org/10.1039/c3np70003h
- Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352 https://doi.org/10.3390/molecules15107313
- Xingfeng G, Daijie W, Wenjuan D, Jinhua D, Xiao W (2010) Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography. Phytochem Anal 21: 268-272 https://doi.org/10.1002/pca.1196
- Zhou ML, Zhu XM, Shao JR, Tang YX, Wu YM (2011) Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol. 90: 1229-1239 https://doi.org/10.1007/s00253-011-3228-0
- Kim BG (2019) Biosynthesis bioactive isokaempferide from naringenin in Escherichia coli. J Appl Biol 62: 1-6 https://doi.org/10.3839/jabc.2019.001
- Han SH, Kim BG, Yoon JA, Chong Y, Ahn JH (2014) Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol 80: 2754-2762 https://doi.org/10.1128/AEM.03797-13
- Zaki AA, Xu X, Wang Y, Shie PH, Qiu L (2019) A new antiinflammatory flavonoid glycoside from Tetraena aegyptia. Nat Prod Res. doi: 10.1080/14786419.2019.1650356
- Yesilada E, Gurbuz I, Toker G (2014) Anti-ulcerogenic activity and isolation of the active principles from Sambucus ebulus L. leaves. J Ethnopharmacol. 153: 478-483. https://doi.org/10.1016/j.jep.2014.03.004
- Jones JA, Vernacchio VR, Lachance DM, Lebovich M1, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MA (2015) ePathOptimize: A combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep 5: 11301 https://doi.org/10.1038/srep11301
- Owens DK, McIntosh CA (2009) Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. Phytochemistry 70: 1382-1391 https://doi.org/10.1016/j.phytochem.2009.07.027
- Kim BG, Sung SH, Jung NR, Chong Y, Ahn JH (2010) Biological synthesis of isorhamnetin 3-O-glucoside using engineered glucosyltransferase. J Mol Catal B Enzym 63:194-199 https://doi.org/10.1016/j.molcatb.2010.01.012
- Kim JH, Kim BG, Park Y, Ko JH, Lim CE, Lim J, Lim Y, Ahn JH (2007) Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Biosci Biotechnol Biochem 70: 1471-1477 https://doi.org/10.1271/bbb.60006
- Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MAG (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Fact 16: 1-14 https://doi.org/10.1186/s12934-016-0616-2
- Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69: 2699-2706 https://doi.org/10.1128/AEM.69.5.2699-2706.2003
- Akdemir H, Silva A, Zha J, Zagorevski DV, Koffas MAG (2019) Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab Eng 55: 290-298 https://doi.org/10.1016/j.ymben.2019.05.008
- Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM, Hahn J, Koffas MAG (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35: 55-63 https://doi.org/10.1016/j.ymben.2016.01.006
Cited by
- Biosynthesis of resveratrol using metabolically engineered Escherichia coli vol.64, pp.1, 2019, https://doi.org/10.1186/s13765-021-00595-5