DOI QR코드

DOI QR Code

Optimization of bioactive isorhamnetin 3-O-glucoside production in Escherichia coli

대장균에서 isorhamnetin 3-O-glucoside의 생합성 최적화

  • Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • Received : 2019.10.07
  • Accepted : 2019.10.21
  • Published : 2019.12.31

Abstract

Isorhamnetin 3-O-glucoside, a member of the flavonol group, has been reported to be effective for inflammatory and ulcer, as well as to alleviate diabetic complications such as neuropathy, nephropathy and retinopathy. Isorhamnetin 3-O-glucoside has been extracted from several plants. Biotransformation is a valuable tool, which is used to produce value-added chemicals with inexpensive compounds. To synthesis isorhamnetin 3-O-glucoside from quercetin, two genes (PGT E82L and ROMT-9) were introduced into Escherichia coli, respectively. In order to synthesis isorhamnetin 3-O-glucoside from quercetin, a co-culture fermentation system was developed by optimizing the medium and temperature for biotransformation, the cell mix ratio, Isopropyl-β-ᴅ-thiogalactoside induction time, and quercetin feed concentration. Finally, isorhamnetin 3-O-glucoside was biosynthesized up to 181.2 mg/L under the optimized biotransformation condition, which was higher 4.7 times than previously reported (39.6 mg/L).

Isorhamnetin 3-O-glucoside는 플라보놀 그룹에 속하는 물질로서 염증이나 궤양에 효과가 있을 뿐만 아니라 신경장해, 신장병증, 망막증과 같은 당뇨합병증을 완화하는 것으로 보고되었다. Isorhamnetin 3-O-glucoside는 Tetraena aegyptia, Salsola oppositifolia, Salicornia herbacea, Sambucus ebulus와 같은 몇몇 식물에서 발견된다. 생물전환은 저렴한 화합물로부터 고부가가치 물질을 생산할 수 있는 유용한 방법이다. 본 연구에서 생물전환을 통해 quercetin으부터 isorhamnetin 3-O-glucoside를 생합성 하기 위해 두 개의 유전자(PGT E82L과, ROMT-9)를 각각의 대장균에 도입하였다. 대장균의 공조배양시스템을 이용하여 isorhamnetin 3-O-glucoside 생산 배양법의 최적화를 위해 생물전환배지, 배양온도, 세포의 혼합비율, 재조합 단백질 유도시간, 기질 공급 농도 등을 테스트하였다. 최적화된 생물전환 조건하에서 생물전환을 실시하였으며, 배양의 12시간 후 181.2 mg/L의 isorhamnetin 3-O-glucoside가 생합성 되었다. 이는 이전의 연구에서 보고된 isorhamnetin 3-O-glucosie (39.6 mg/L)의 생합성보다 4.7배 높았다.

Keywords

References

  1. Terao J, Kawai Y, Murota (2008) Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17: 291-293
  2. Kim MJ, Kim BG, Ahn JH (2013) Biosynthesis of bioactive Omethylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97: 7195-7204 https://doi.org/10.1007/s00253-013-5020-9
  3. Peterson J, Dwyer J (1998) Taxonomic classification helps identify flavonoid-containing foods on a semiquantitative food frequency questionnaire. J Am Diet Assoc 98: 677-682 https://doi.org/10.1016/S0002-8223(98)00153-9
  4. Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91: 949-956 https://doi.org/10.1007/s00253-011-3449-2
  5. Kim BG, Sung SH, Chong Y, Lim Y, Ahn JH (2010) Plant flavonoid Omethyltransferase: substrate specificity and application. J Plant Biol 53: 321-329 https://doi.org/10.1007/s12374-010-9126-7
  6. Wang X (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583: 3303-3309 https://doi.org/10.1016/j.febslet.2009.09.042
  7. Maria L. Falcone Ferreyra, Sebastian P. Rius, Paula Casati (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3(222): 1-15
  8. Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8: 281-290 https://doi.org/10.1089/jmf.2005.8.281
  9. Jose Justino (2017) Flavonoids: From biosynthesis of human health. InTechOpen 371-391
  10. Schmidt AW, Reddy KR, Knolker HJ (2012) Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem Rev: 112: 3193-3328 https://doi.org/10.1021/cr200447s
  11. Souza AB, Martins CH, Souza MG, Furtado NA, Heleno VC, de Sousa JP, Rocha EM, Bastos JK, Cunha WR, Veneziani RC, Ambrosio SR (2011) Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother Res 25: 215-220 https://doi.org/10.1002/ptr.3244
  12. Xiao J, Ni X, Kai G, Chen X (2013) A review on structure-activity relationship of dietary polyphenols inhibiting a-amylase. Crit Rev Food Sci Nutr 53: 497-506 https://doi.org/10.1080/10408398.2010.548108
  13. Stachulski AV, Meng X (2013) Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat Prod Rep 30: 806-848 https://doi.org/10.1039/c3np70003h
  14. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352 https://doi.org/10.3390/molecules15107313
  15. Xingfeng G, Daijie W, Wenjuan D, Jinhua D, Xiao W (2010) Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography. Phytochem Anal 21: 268-272 https://doi.org/10.1002/pca.1196
  16. Zhou ML, Zhu XM, Shao JR, Tang YX, Wu YM (2011) Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol. 90: 1229-1239 https://doi.org/10.1007/s00253-011-3228-0
  17. Kim BG (2019) Biosynthesis bioactive isokaempferide from naringenin in Escherichia coli. J Appl Biol 62: 1-6 https://doi.org/10.3839/jabc.2019.001
  18. Han SH, Kim BG, Yoon JA, Chong Y, Ahn JH (2014) Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol 80: 2754-2762 https://doi.org/10.1128/AEM.03797-13
  19. Zaki AA, Xu X, Wang Y, Shie PH, Qiu L (2019) A new antiinflammatory flavonoid glycoside from Tetraena aegyptia. Nat Prod Res. doi: 10.1080/14786419.2019.1650356
  20. Yesilada E, Gurbuz I, Toker G (2014) Anti-ulcerogenic activity and isolation of the active principles from Sambucus ebulus L. leaves. J Ethnopharmacol. 153: 478-483. https://doi.org/10.1016/j.jep.2014.03.004
  21. Jones JA, Vernacchio VR, Lachance DM, Lebovich M1, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MA (2015) ePathOptimize: A combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep 5: 11301 https://doi.org/10.1038/srep11301
  22. Owens DK, McIntosh CA (2009) Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. Phytochemistry 70: 1382-1391 https://doi.org/10.1016/j.phytochem.2009.07.027
  23. Kim BG, Sung SH, Jung NR, Chong Y, Ahn JH (2010) Biological synthesis of isorhamnetin 3-O-glucoside using engineered glucosyltransferase. J Mol Catal B Enzym 63:194-199 https://doi.org/10.1016/j.molcatb.2010.01.012
  24. Kim JH, Kim BG, Park Y, Ko JH, Lim CE, Lim J, Lim Y, Ahn JH (2007) Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Biosci Biotechnol Biochem 70: 1471-1477 https://doi.org/10.1271/bbb.60006
  25. Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MAG (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Fact 16: 1-14 https://doi.org/10.1186/s12934-016-0616-2
  26. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69: 2699-2706 https://doi.org/10.1128/AEM.69.5.2699-2706.2003
  27. Akdemir H, Silva A, Zha J, Zagorevski DV, Koffas MAG (2019) Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab Eng 55: 290-298 https://doi.org/10.1016/j.ymben.2019.05.008
  28. Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM, Hahn J, Koffas MAG (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35: 55-63 https://doi.org/10.1016/j.ymben.2016.01.006

Cited by

  1. Biosynthesis of resveratrol using metabolically engineered Escherichia coli vol.64, pp.1, 2019, https://doi.org/10.1186/s13765-021-00595-5