DOI QR코드

DOI QR Code

도파민 코팅을 이용한 3차원 그래핀 나노 구조체의 전기화학적/기계적 특성 향상 연구

Enhancement of Electrochemical and Mechanical Properties of 3D Graphene Nanostructures by Dopamine-coating

  • Lee, Guk Hwan (School of Mechanical Engineering, Chonnam National University) ;
  • Luan, Van Hoang (School of Mechanical Engineering, Chonnam National University) ;
  • Han, Jong Hun (School of Chemical Engineering, Chonnam National University) ;
  • Kang, Hyun Wook (School of Mechanical Engineering, Chonnam National University) ;
  • Lee, Wonoh (School of Mechanical Engineering, Chonnam National University)
  • 투고 : 2019.11.06
  • 심사 : 2019.12.31
  • 발행 : 2019.12.31

초록

그래핀의 저차원 구조에서 기인하는 우수한 전기적/기계적 특성을 지닌 3차원 그래핀 나노 구조체는 높은 다공성과 비표면적을 가지고 있기 때문에 전기화학 에너지 저장 전극 물질로 각광을 받고 있다. 또한 도파민은 카테콜아민 구조를 갖고 있어 다양한 유무기 재료와의 결합력이 뛰어나고, 소수성 재료를 친수성으로 개질시킬 수 있는 다기능 소재이다. 이에 본 연구에서는 도파민을 3차원 그래핀 나노 구조체에 코팅하여, 전해질과의 젖음성을 증대시켜 전기화학 전극의 비축전용량을 개선하고, 3차원 나노 네트워크 간 결합력을 올려 기계적 압축 특성을 증가시키고자 하였다. 연구 결과, 도파민이 코팅된 3차원 그래핀 나노 구조체는 전기화학 비축전용량이 51.5%, 압축 응력은 59.6%로 증가하는 높은 개선 효과를 나타내었다.

Inherited the excellent electrical and mechanical properties based on the low dimensional structure of graphene, three-dimensional graphene nanostructures have gathered great attention as electrochemical energy storage electrodes owing to their high porosity and large specific surface area. Also, having the catecholamine structure, dopamine has been regarded as a multifunctional material to possess high affinity to various organic/inorganic materials and to modify a hydrophobic surface to a hydrophilic one. In this work, through coating dopamine on the three-dimensional graphene nanostructure, we tried to increase the specific capacitance by enhancing the wettability with electrolyte and to improve the mechanical compressive property by strengthening the nano-architecture. As a result, the dopamine-coated nanostructure exhibited significant improvement on the specific capacitance (51.5% increase) and compressive stress (59.6% increase).

키워드

참고문헌

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., "Two-Dimensional Gas of Massless Dirac Fermions in Graphene," Nature, Vol. 438, No. 197, 2005, pp. 197-200. https://doi.org/10.1038/nature04233
  2. Lee, W., Lee, J.U., Jung, B.M., Byun, J.H., Yi, J.W., Lee, S.B., and Kim, B.S., "Simultaneous Enhancement of Mechanical, Electrical and Thermal Properties of Graphene Oxide Paper by Embedding Dopamine," Carbon, Vol. 65, 2013, pp. 296-304. https://doi.org/10.1016/j.carbon.2013.08.029
  3. Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., Van Vuure, A.W., Lomov, S.V., and Verpoest, I., "Interfacial Shear Strength of a Glass Fiber/Epoxy Bonding in Composites Modified with Carbon Nanotubes," Composites Science and Technology, Vol. 70, No. 9, 2010, pp. 1346-1352. https://doi.org/10.1016/j.compscitech.2010.04.010
  4. Zhang, X., Fan, X., Yan, C., Li, H., Zhu, Y., Li, X., and Yu, L., "Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide," ACS Applied Materials & Interfaces, Vol. 4, No. 3, 2012, pp. 1543-1552. https://doi.org/10.1021/am201757v
  5. Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., and Bismarck, A., "Carbon Nanotube-Based Hierarchical Composites: A Review," Journal of Materials Chemistry, Vol. 20, No. 23, 2010, pp. 4751-4762. https://doi.org/10.1039/c000041h
  6. Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., and Chou, T.W., "Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composite," Journal of Applied Physics, Vol. 91, No. 9, 2002, pp. 6034-6037. https://doi.org/10.1063/1.1466880
  7. Nakanishi, W., Minami, K., Shrestha, L.K., Ji, Q., Hill, J.P., and Ariga, K., "Bioactive Nanocarbon Assemblies: Nanoarchitectonics and Applications," Nano Today, Vol. 9, No. 3, 2014, pp. 378-394. https://doi.org/10.1016/j.nantod.2014.05.002
  8. Zhang, L.L., and Zhao, X.S., Carbon-Based Materials as Supercapacitor Electrodes," Chemical Society Reviews, Vol. 38, No. 9, 2009, pp. 2520-2531. https://doi.org/10.1039/b813846j
  9. Luan, V.H., Han, J.H., Kang H.W., and Lee, W., "Highly Porous and Capacitive Copper Oxide Nanowire/Graphene Hybrid Carbon Nanostructure for High-Performance Supercapacitor Electrodes," Composites Part B: Engineering, Vol. 178, 2019, pp. 107464. https://doi.org/10.1016/j.compositesb.2019.107464
  10. Yin, H., Tang, H., Wang, D., Gao, Y., and Tang, Z., "Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction," ACS Nano, Vol. 6, No. 9, 2012, pp. 8288-8297. https://doi.org/10.1021/nn302984x
  11. Zhou, G., Kim, N.R., Chun, S.E., Lee, W., Um, M.K., Chou, T.W., Islam, M.F., Byun, J.H., and Oh, Y., "Highly Porous and Easy Shapeable Poly-Dopamine Derived Graphene-Coated Single Walled Carbon Nanotube Aerogels for Stretchable Wire-Type Supercapacitors," Carbon, Vol. 130, 2018, pp. 137-144. https://doi.org/10.1016/j.carbon.2017.12.123
  12. Chen, C.M., Yang, Q.H., Yang, Y.G., Lv, W., Wen, Y.F., Hou, P.X., Wang, M.Z., and Cheng, H.M., "Self‐Assembled Free‐Standing Graphite Oxide Membrane," Advanced Materials, Vol. 21, 2009, pp. 3007-3011. https://doi.org/10.1002/adma.200803726
  13. Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., and Liu, B., "Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electrochemical Power Sources," Journal of Materials Chemistry, Vol. 21, No. 18, 2011, pp. 6494-6497. https://doi.org/10.1039/c1jm10239g
  14. Tien, H.N., Luan, V.H., Cuong, T.V., Kong, B.S., Chung, J.S., Kim, E.J., and Hur, S.H., "Fast and Simple Reduction of Graphene Oxide in Various Organic Solvents Using Microwave Irradiation," Journal of Nanoscience and Nanotechnology, Vol. 12, No. 7, 2012, pp. 5658-5662. https://doi.org/10.1166/jnn.2012.6340
  15. Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B., "Mussel-Inspired Surface Chemistry for Multifunctional Coatings," Science, Vol. 318, No. 5849, 2007, pp. 426-430. https://doi.org/10.1126/science.1147241
  16. Lee, W., Lee, J.U., and Byun, J.H., "Catecholamine Polymers as Surface Modifiers for Enhancing Interfacial Strength of Fiber-Reinforced Composites," Composites Science and Technology, Vol. 110, 2015, pp. 53-61. https://doi.org/10.1016/j.compscitech.2015.01.021
  17. Luan, V.H., Bae, D., Han, J.H., and Lee, W., "Mussel-Inspired Dopamine-Mediated Graphene Hybrid with Silver Nanoparticles for High Performance Electrochemical Energy Storage Electrodes," Composites Part B: Engineering, Vol. 134, 2018, pp.141-150. https://doi.org/10.1016/j.compositesb.2017.09.070
  18. Hummers, W.S., and Offeman, R.E., "Preparation of Graphitic Oxide," Journal of the American Chemical Society, Vol. 80, 1958, 1339. https://doi.org/10.1021/ja01539a017
  19. Luan, V.H., Tien, H.N., Hoa, L.T., Hien, N.T.M., Oh, E.S., Chung, J.S., Kim, E.J., Choi, W.M., Kong B.S., and Hur, S.H., "Synthesis of a Highly Conductive and Large Surface Area Graphene Oxide Hydrogel and Its Use in a Supercapacitor," Journal of Materials Chemistry A, Vol. 1, No. 2, 2013, pp. 208-211. https://doi.org/10.1039/C2TA00444E
  20. Kim, K.H., Oh, Y., and Islam, M.F., "Mechanical and Thermal Management Characteristics of Ultrahigh Surface Area Single-Walled Carbon Nanotube Aerogels," Advanced Functional Materials, Vol. 23, No. 3, 2013, pp. 377-383. https://doi.org/10.1002/adfm.201201055
  21. Yang, Z., Xu, M., Liu, Y., He, F., Gao, F., Su, Y., Wei, H., and Zhang, Y., "Nitrogen-Doped, Carbon-Rich, Highly Photoluminescent Carbon Dots from Ammonium Citrate," Nanoscale, Vol. 6, No. 3, 2014, pp. 1890-1895. https://doi.org/10.1039/C3NR05380F
  22. Nam, K.H., Jin, J.U., Lee, J.H., Kim, J., Chung, Y.S., Yeo, H., You, N.H., and Ku, B.C., "Highly Efficient Thermal Oxidation and Cross-linking Reaction of Catechol Functionalized Polyacrylonitrile Copolymer Composites for Halogen-free Flame Retardant," Composites Part B: Engineering, Vol. 84, 2019, pp. 107687.
  23. Compton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., and Nguyen, S.T., "Chemically Active Reduced Graphene Oxide with Tunable C/O Ratios," ACS Nano, Vol. 5, No. 6, 2011, pp. 4380-4391. https://doi.org/10.1021/nn1030725
  24. Zhao, J., Lai, H., Lyu, Z., Jiang, Y., Xie, K., Wang, X., Wu, Q., Yang, L., Jin, Z., Ma, Y., Liu, J., and Hu, Z., "Hydrophilic Hierarchical Nitrogen‐Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance," Advance Materials, Vol. 27, No. 23, 2015, pp. 3541-3545. https://doi.org/10.1002/adma.201500945