DOI QR코드

DOI QR Code

Antioxidant, Anti-Melanogenic and Anti-Wrinkle Effects of Phellinus vaninii

  • Im, Kyung Hoan (Division of Life Sciences, Incheon National University) ;
  • Baek, Seung A (Division of Life Sciences, Incheon National University) ;
  • Choi, Jaehyuk (Division of Life Sciences, Incheon National University) ;
  • Lee, Tae Soo (Division of Life Sciences, Incheon National University)
  • Received : 2019.04.03
  • Accepted : 2019.09.19
  • Published : 2019.12.01

Abstract

In this study, the antioxidant, anti-xanthine oxidase, anti-melanogenic and anti-wrinkle effects of methanol (ME) and hot water (HE) extracts from the fruiting bodies of Phellinus vaninii were investigated. The 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging activity of 2.0 mg/mL HE (95.38%) was comparable to that of butylated hydroxytoluene (96.97%), the reference standard. The hydroxyl radical scavenging activities of ME (98.19%) and HE (97.55%) were higher than that of butylated hydroxytoluene (92.66%) at 2.0 mg/mL. Neither ME nor HE was cytotoxic to murine melanoma B16-F10 cells at 25-750 ㎍/mL. Although the xanthine oxidase (XO) inhibitory effects of ME and HE were significantly lower than that of allopurinol, the values were higher than 84 percent. The in vitro tyrosinase inhibitory activities of ME and HE were comparable to kojic acid at 2.0 mg/mL. The cellular tyrosinase and melanin synthetic activities of ME and HE on B16-F10 melanoma cells at 500 ㎍/mL were higher than arbutin, indicating that the inhibitory effects of arbutin on the tyrosinase and melanin synthesis were higher than those of ME and HE. The collagenase inhibitory activity of HE was comparable to EGCG at 2.0 mg/mL, however, the elastase inhibitory activity of ME and HE was lower than EGCG at the concentration tested. The study results demonstrated that the fruiting bodies of Ph. vaninii possessed good antioxidant, anti-xanthine oxidase, cell-free anti-tyrosinase, cellular anti-tyrosinase, anti-collagenase, and moderate anti-elastase activities, which might be used for the development of novel anti-gout, skin-whitening, and skin anti-wrinkle agents.

Keywords

References

  1. Valko M, Leibfritz D, Moncol J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  2. Aseervatham GSB, Sivasudha T, Jeyadevi R, et al. Environmental factors and unhealthy lifestyle influence oxidative stress in humans-an overview. Environ Sci Pollut Res. 2013;20(7):4356-4369. https://doi.org/10.1007/s11356-013-1748-0
  3. Spector A. Oxidative stress and disease. J Ocul Pharmacol Ther. 2000;16(2):193-201. https://doi.org/10.1089/jop.2000.16.193
  4. Dawson J, Walters M. Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease? Br J Clin Pharmacol. 2006;62(6):633-644. https://doi.org/10.1111/j.1365-2125.2006.02785.x
  5. Song JS. New classification criteria and guideline for management of gout. Kor J Med. 2018;93(4):344-350. https://doi.org/10.3904/kjm.2018.93.4.344
  6. Suresh E, Das P. Recent advances in management of gout. Q J Med. 2012;105(5):407-417. https://doi.org/10.1093/qjmed/hcr242
  7. Kim S, Kim HJ, Ahn HS, et al. Renoprotective effects of febuxostat compared with allopurinol in patients with hyperuricemia: a systematic review and meta-analysis. Kidney Res Clin Pract. 2017;36(3):274-281. https://doi.org/10.23876/j.krcp.2017.36.3.274
  8. Nerya O, Vaya J, Musa R, et al. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J Agric Food Chem. 2003;51(5):1201-1207. https://doi.org/10.1021/jf020935u
  9. Hearing VJ. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci. 2005;37(1):3-14. https://doi.org/10.1016/j.jdermsci.2004.08.014
  10. Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003;16(2):101-118. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  11. Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):403-425. https://doi.org/10.1080/14756366.2016.1256882
  12. Smit N, Vicanova J, Pavel S. The hunt for natural skin whitening agents. Int J Mol Sci. 2009;10(12):5326-5349. https://doi.org/10.3390/ijms10125326
  13. Sjerobabski-Masnec I, Situm M. Skin aging. Acta Clin Croat. 2010;49(4):515-519.
  14. Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta. 2013;1832(7):866-875. https://doi.org/10.1016/j.bbadis.2012.11.022
  15. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78(1):929-958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
  16. Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci. 2002;115(Pt 14):2817-2828. https://doi.org/10.1242/jcs.115.14.2817
  17. Feeney MJ, Miller AM, Roupas P. Mushrooms-biologically distinct and nutritionally unique exploring a "third food kingdom. Nutr Today. 2014;49(6):301-307. https://doi.org/10.1097/NT.0000000000000063
  18. Lindequist U, Niedermeyer THJ, Julich WD. The pharmacological potential of mushrooms. Evid based Complement Alternat Med. 2005;2(3):285-299. https://doi.org/10.1093/ecam/neh107
  19. Rathee S, Rathee D, Rathee D, et al. Mushrooms as therapeutic agents. Rev Bras Farmacogn. 2012;22:457-474.
  20. Dai YC. A new kind of medicinal fungi-Phellinus vaninii Ljup (Phellinus spp). Chin Edible Fungi. 2003;22:7-8.
  21. Hsieh PW, Wu JB, Wu YC. Chemistry and biology of Phellinus linteus. Biomed. 2013;3(3):105-113. https://doi.org/10.1016/j.biomed.2013.06.001
  22. Azeem U, Dhingra GS, Shri R. Pharmacological potential of wood inhabiting fungi of genus Phellinus Quel.: an overview. J Pharmacogn Phytochem. 2018;7(2):1161-1171.
  23. Cheng XY, Bao HY, Ding Y, et al. Free radical scavenging activities of phenolic and flavonoid compounds from fruiting body of Phellinus vaninii. Mycosystema. 2011;30:281-287.
  24. Hu W, Liu S, Zhang Y, et al. Mycelial fermentation characteristics and antiproliferative activity of Phellinus vaninii Ljup. Pharmacogn Mag. 2014;10:430-434.
  25. Singleton VL, Rossi JA. Jr. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Amer J Enol Viticult. 1965;16:144-158.
  26. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effect on superoxide radicals. Food Chem. 1999;64(4):555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  27. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Meth. 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  28. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958;181(4617):1199-1200. https://doi.org/10.1038/1811199a0
  29. Ruberto G, Baratta MT, Deans SG, et al. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 2000;66(8):687-693. https://doi.org/10.1055/s-2000-9773
  30. Halliwell B, Gutteridge JM, Aruoma OI. The deoxyribose method: a simple "test-tube" assay for the determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 1987;165(1):215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  31. Owen PL, Johns T. Xanthine oxidase inhibitory activity of north-eastern North American plant remedies used for gout. J Ethnopharmacol. 1999;64:149-160. https://doi.org/10.1016/S0378-8741(98)00119-6
  32. Kim MJ, Ryu MJ. Inhibition of melanogenesis and anti-UV properties of Reynoutri eppitica. Kor J Aesthet Cosmotol. 2012;10:961-968.
  33. Masuda T, Yamashita D, Takeda Y, et al. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci Bitotechnol Biochem. 2005;69(1):197-201. https://doi.org/10.1271/bbb.69.197
  34. Nagata H, Takekoshi S, Takeyama R, et al. Quercetin enhances melanogenesis by increasing the activity and synthesis of tyrosinase in human melanoma cells and normal human melanocytes. Pigment Cell Res. 2004;17(1):66-73. https://doi.org/10.1046/j.1600-0749.2003.00113.x
  35. Hosoi J, Abe E, Suda T, et al. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihyfroxyvitamin D3 and retinoic acid. Cancer Res. 1985;45(4):1474-1478.
  36. Kim Y, Uyama H, Kobayashi S. Inhibition effects of (+)-catechinaldehyde polycondensates on proteinase causing proteolytic degradation of extracellular matrix. Biochem Biophys Res Commun. 2004;320(1):256-261. https://doi.org/10.1016/j.bbrc.2004.05.163
  37. Van Wart HE, Steinbrink DR. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal Biochem. 1981;113(2):356-365. https://doi.org/10.1016/0003-2697(81)90089-0
  38. Vamanu E, Nita S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. BioMed Res Int. 2013;2013:313905.
  39. Kosanic M, Rankovic B, Dasic M. Mushrooms as possible antioxidant and antimicrobial agents. Iranian J Pharmaceut Res. 2012;11(4):1095-1102.
  40. Nguyen TK, Im KH, Choi JH, et al. Evaluation of antioxidant, anti-cholinesterase, and anti-inflammatory effects of culinary mushroom Pleurotus pulmonarius. Mycobiology. 2016;44(4):291-301. https://doi.org/10.5941/MYCO.2016.44.4.291
  41. Mau JL, Lin HC, Song SF. Antioxidant properties of several specialty mushrooms. Food Res Int. 2002;35(6):519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  42. Obodai M, Ferreira I, Fernandes A, et al. The chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Molecules. 2014;19(12):19532-19548. https://doi.org/10.3390/molecules191219532
  43. Abdullah N, Ismail ST, Aminudin N, et al. Evaluation of selected culinary-medicinalmushrooms for antioxidant and ace inhibitory activities. Evid based Complement Alternat Med. 2012;2012:464238.
  44. Premkumari B, Shivashankar M. Study on in vitro free radical scavenging activity of Hypsizygus ulmarius mushroom. J Chem Pharmaceut Res. 2014;6(6):501-507.
  45. Yoon KN, Jang HS. Anti-xanthine oxidase, anticholinesterase, and anti-inflammatory activities of fruiting bodies of Phellinus gilvus. Kor J Clin Lab Sci. 2018;50(3):225-235. https://doi.org/10.15324/kjcls.2018.50.3.225
  46. Nagano A, Seki M, Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem. 1999;63(10):1787-1790. https://doi.org/10.1271/bbb.63.1787
  47. Alam N, Yoon KN, Cha YJ, et al. Appraisal of the antioxidant, phenolic compounds concentration, xanthine oxidase and tyrosinase inhibitory activities of Pleurotus salmoneostramineus. Afr J Agric Res. 2011;6(6):1555-1563.
  48. Wang Y, Curtis-Long MJ, Lee BW, et al. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philipinensis root. Bioorganic Med Chem. 2014;22(3):1115-1120. https://doi.org/10.1016/j.bmc.2013.12.047
  49. Kim DH, Park JY, Kim JH, et al. Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study. J Agric Food Chem. 2006;54 (3):935-941. https://doi.org/10.1021/jf0521855
  50. Huang HC, Hsu TF, Chao HL, et al. Inhibition of melanogenesis in murine melanoma cells by Agaricus brasiliensis methanol extract and antireactive oxygen species (ROS) activity. Afr J Microbiol Res. 2014;8:519-524. https://doi.org/10.5897/AJMR2013.6271
  51. Cha JY, Kim SY. Anti-melanogenesis in B16F0 melanoma cells by extract of fermented Cordyceps militaris containing high cordycepin. J Life Sci. 2013;23(12):1516-1524. https://doi.org/10.5352/JLS.2013.23.12.1516
  52. Tyagi SC, Simon SR. Regulation of neutrophil elastase activity by elastin-derived peptide. J Biol Chem. 1993;268(22):16513-16518. https://doi.org/10.1016/S0021-9258(19)85449-2
  53. Kim SY, Go KC, Song YS, et al. Extract of the mycelium of T. matsutake inhibits elastase activity and TPA-induced MMP-1 expression in human fibroblasts. Int J Mol Med. 2014;34(6):1613-1621. https://doi.org/10.3892/ijmm.2014.1969
  54. Choi BY, Lee HH. Antioxidant and physiological activities of Coriolus versicolor fruit body crude extracts. J Kor Acad-Indust Coop Soc. 2016;17(8):415-422. https://doi.org/10.5762/KAIS.2016.17.8.415
  55. Pruteanu M, Hyland NP, Clarke DJ, et al. Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(5):1189-1200. https://doi.org/10.1002/ibd.21475
  56. Cheon SJ, Jang MJ, Jang YA, et al. Anti-wrinkle effect of Cambodian Phellinus linteus extracts. J Life Sci. 2008;18(12):1718-1722. https://doi.org/10.5352/JLS.2008.18.12.1718
  57. Thring TSA, Hili P, Naughton DP. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med. 2009;9(1):1-11. https://doi.org/10.1186/1472-6882-9-1
  58. Ghimeray AK, Jung US, Lee HY, et al. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract collagenase. Clin Cosmet Investig Dermatol. 2015;8:389-396. https://doi.org/10.2147/CCID.S80906

Cited by

  1. Pholiota nameko Polysaccharides Promotes Cell Proliferation and Migration and Reduces ROS Content in H 2 O 2 -Induced L929 Cells vol.9, pp.1, 2020, https://doi.org/10.3390/antiox9010065
  2. Aqueous extracts of Sanghuangporus vaninii induce S‑phase arrest and apoptosis in human melanoma A375 cells vol.22, pp.2, 2019, https://doi.org/10.3892/ol.2021.12889
  3. Unravelling Anti-Melanogenic Potency of Edible Mushrooms Laetiporus sulphureus and Agaricus silvaticus In Vivo Using the Zebrafish Model vol.7, pp.10, 2021, https://doi.org/10.3390/jof7100834
  4. Use of transcriptomic profiling to identify candidate genes involved in Polyporus umbellatus sclerotial formation affected by oxalic acid vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-96740-7