References
- Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 2013;11:789-99. https://doi.org/10.1038/nrmicro3109
- Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003;255:571-86. https://doi.org/10.1023/A:1026037216893
- Saharan BS, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011;21:1-30.
- Jadhav HP, Shaikh SS, Sayyed RZ. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: KumarArora Naveen, Mehnaz Samina, editors. Microorganisms for sustainability vol. 2 rhizotrophs: plant growth promotion to bioremediation. Singapore: Springer; 2017. p. 183-203.
- Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 2005;3:307-19. https://doi.org/10.1038/nrmicro1129
- Khan AH. Biology and pathogenicity of Rosellinia necatrix (Hart.) Berl. Biologia 1959;5:199-245.
- Sztejnberg A, Madar Z. Host range of Dematophora necatrix the cause of white root rot disease in fruit trees. Plant Dis 1980;64:662-4. https://doi.org/10.1094/PD-64-662
- Pliego C, Lopez-Herrera C, Ramos C, Cazorla FM. Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops. Mol Plant Pathol 2012;13:226-39. https://doi.org/10.1111/j.1364-3703.2011.00753.x
- Kumar A, Prakash A, Johri BN. Bacillus as PGPR in crop ecosystems. In: Maheshwari DK, editor. Bacteria in agrobiology: crop ecosystems. Berlin, Heidelberg: Springer; 2011. p. 37-59.
- Shrestha A, Sultana R, Chae JC. Kim K, Lee KJ. Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. Eur J Plant Pathol 2015;142:577-89. https://doi.org/10.1007/s10658-015-0636-5
- Sultana R, Kim K. Bacillus thuringiensis C25 suppresses popcorn disease caused by Ciboria shiraiana in mulberry (Morus australis L.). Biocontrol Sci Techn 2016;26:145-62. https://doi.org/10.1080/09583157.2015.1084999
- Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673-9. https://doi.org/10.1093/bioinformatics/btm009
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402. https://doi.org/10.1093/nar/25.17.3389
- Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674-6. https://doi.org/10.1093/bioinformatics/bti610
- Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100-8. https://doi.org/10.1093/nar/gkm160
- Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955-64. https://doi.org/10.1093/nar/25.5.0955
- Chet I, Ordentlich A, Shapira R, Oppenheim A. Mechanism of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 1990;129:85-92. https://doi.org/10.1007/BF00011694
- Gomaa EZ. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J Microbiol 2012;50:103-11. https://doi.org/10.1007/s12275-012-1343-y
- Chernin L, Ismailov Z, Haran S, Chet I. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 1995;61:1720-6. https://doi.org/10.1128/aem.61.5.1720-1726.1995
- Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 2008;47:486-91. https://doi.org/10.1111/j.1472-765X.2008.02428.x
- Lee HY, Won K, Kim YK, Cho M, Kim K, Ryu H. Complete genome sequence of Bacillus thuringiensis C25, a potential biocontrol agent for sclerotia-forming fungal phytopathogens. Korean J Microbiol 2017;53:216-8. https://doi.org/10.7845/kjm.2017.7045
- Fridlander M, Inbar J, Chet I. Biological control of soil-borne plant pathogens by a beta-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 1993;25:1211-21. https://doi.org/10.1016/0038-0717(93)90217-Y