DOI QR코드

DOI QR Code

Functional Genomic Analysis of Bacillus thuringiensis C25 Reveals the Potential Genes Regulating Antifungal Activity against Rosellinia necatrix

Bacillus thuringiensis C25의 흰날개무늬병 Rosellinia necatrix에 대한 항진균 활성에 관여하는 유전자 특성 및 기능 유전체학적 연구

  • Kim, Kangmin (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Lee, Hwa-Yong (Department of Biology, Chungbuk National University) ;
  • Bae, Wonsil (Department of Biology, Chungbuk National University) ;
  • Cho, Min (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University)
  • 김강민 (전북대학교 생명공학부) ;
  • 이화용 (충북대학교 생물학과) ;
  • 배원실 (충북대학교 생물학과) ;
  • 조민 (전북대학교 생명공학부) ;
  • 류호진 (충북대학교 생물학과)
  • Received : 2019.10.02
  • Accepted : 2019.12.03
  • Published : 2019.12.31

Abstract

Biocontrol agents (BCAs) are widely used to protect plants from diverse biotic and abiotic stresses in agricultural and ecological fields. Among the various microbes, many subspecies of the gram-positive genus, Bacillus, have been successfully industrialized as eco-friendly biological pesticides and fertilizers. In the current study, we demonstrated that Bacillus thuringiensis C25 exhibited antagonistic effects on the mycelial growth of Rosellinia necatrix, a fungal phytopathogen. Scanning electron microscopy analysis revealed that B. thuringiensis C25 degraded the cell wall structures of R. necatrix mycelia. In the functional genomic analysis of B. thuringiensis C25, we annotated 5,683 genes and selected the gene sets that potentially encoded fungal cell wall degrading enzymes (CWDEs). The growth inhibition effects on R. necatrix were highly correlated with the transcriptional activity of the mycelial cell wall degrading genes of B. thuringiensis C25. The transcript levels of CWDEs, including CshiA, B, and Glycos_transf_2 genes in B. thuringiensis C25, were enhanced following co-cultivation with R. necatrix. In conclusion, our study suggested that B. thuringiensis C25 could serve as a suitable candidate for controlling R. necatrix and could facilitate elucidating the mechanisms underlying the antifungal activities of BCAs against phytopathogens.

다양한 생물적 스트레스로부터 경제적으로 중요한 식물을 보호하기 위한 친환경 biocontrol agents (BCAs)는 오늘날 농업 및 생태 분야에서 다양하게 사용되고 있다. 다양한 BCAs 중에서, 많은 그람 양성Bacillus 속 아종이 친환경 생물학적 살충제 및 비료로서 성공적으로 산업화되었다. 이 연구에서 우리는 식물병원성 균류의 균사생장에 길항 효과를 보여주는 BCAs 중 하나인 Bacillus thuringiensis C25가 흰날개무늬병을 일으키는Rosellinia necatrix에 대한 길항작용이 있음을 확인하였다. 주사전자현미경을 통해B. thuringiensis C25가R. necatrix의 균사 세포벽을 분해하여 균사생장을 억제하는 것을 확인하였다. B. thuringiensis C25의 전장 유전체에서 5,683 유전자 세트의 서열을 동정하였고, 잠재적으로 곰팡이 세포벽 분해 효소 (CWDE)를 암호화하는 유전자 세트를 선발하였다. R. necatrix에 대한 균사성장 억제효과는B. thuringiensis C25의 균사 세포벽 분해 유전자의 전사 활성과 높은 상관 관계가 있었다. 상세하게는, B. thuringiensis C25에서ChiA, B 및 Glycos_transf_2 유전자를 포함하는 CWDE의 전사체 수준은R. necatrix와의 공동 배양에 의해 향상되었다. 결론적으로, 본 연구에서는 B. thuringiensis C25가 R. necatrix를 제어할 수 있는 생물학적 소재가 될 수 있으며, 식물 병원체에 대한 BCA의 항진균성 메커니즘의 이해를 촉진할 수 있음을 제시하였다.

Keywords

References

  1. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 2013;11:789-99. https://doi.org/10.1038/nrmicro3109
  2. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003;255:571-86. https://doi.org/10.1023/A:1026037216893
  3. Saharan BS, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011;21:1-30.
  4. Jadhav HP, Shaikh SS, Sayyed RZ. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: KumarArora Naveen, Mehnaz Samina, editors. Microorganisms for sustainability vol. 2 rhizotrophs: plant growth promotion to bioremediation. Singapore: Springer; 2017. p. 183-203.
  5. Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 2005;3:307-19. https://doi.org/10.1038/nrmicro1129
  6. Khan AH. Biology and pathogenicity of Rosellinia necatrix (Hart.) Berl. Biologia 1959;5:199-245.
  7. Sztejnberg A, Madar Z. Host range of Dematophora necatrix the cause of white root rot disease in fruit trees. Plant Dis 1980;64:662-4. https://doi.org/10.1094/PD-64-662
  8. Pliego C, Lopez-Herrera C, Ramos C, Cazorla FM. Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops. Mol Plant Pathol 2012;13:226-39. https://doi.org/10.1111/j.1364-3703.2011.00753.x
  9. Kumar A, Prakash A, Johri BN. Bacillus as PGPR in crop ecosystems. In: Maheshwari DK, editor. Bacteria in agrobiology: crop ecosystems. Berlin, Heidelberg: Springer; 2011. p. 37-59.
  10. Shrestha A, Sultana R, Chae JC. Kim K, Lee KJ. Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. Eur J Plant Pathol 2015;142:577-89. https://doi.org/10.1007/s10658-015-0636-5
  11. Sultana R, Kim K. Bacillus thuringiensis C25 suppresses popcorn disease caused by Ciboria shiraiana in mulberry (Morus australis L.). Biocontrol Sci Techn 2016;26:145-62. https://doi.org/10.1080/09583157.2015.1084999
  12. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673-9. https://doi.org/10.1093/bioinformatics/btm009
  13. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402. https://doi.org/10.1093/nar/25.17.3389
  14. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674-6. https://doi.org/10.1093/bioinformatics/bti610
  15. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100-8. https://doi.org/10.1093/nar/gkm160
  16. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955-64. https://doi.org/10.1093/nar/25.5.0955
  17. Chet I, Ordentlich A, Shapira R, Oppenheim A. Mechanism of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 1990;129:85-92. https://doi.org/10.1007/BF00011694
  18. Gomaa EZ. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J Microbiol 2012;50:103-11. https://doi.org/10.1007/s12275-012-1343-y
  19. Chernin L, Ismailov Z, Haran S, Chet I. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 1995;61:1720-6. https://doi.org/10.1128/aem.61.5.1720-1726.1995
  20. Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 2008;47:486-91. https://doi.org/10.1111/j.1472-765X.2008.02428.x
  21. Lee HY, Won K, Kim YK, Cho M, Kim K, Ryu H. Complete genome sequence of Bacillus thuringiensis C25, a potential biocontrol agent for sclerotia-forming fungal phytopathogens. Korean J Microbiol 2017;53:216-8. https://doi.org/10.7845/kjm.2017.7045
  22. Fridlander M, Inbar J, Chet I. Biological control of soil-borne plant pathogens by a beta-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 1993;25:1211-21. https://doi.org/10.1016/0038-0717(93)90217-Y