DOI QR코드

DOI QR Code

Optimization of the Expression of the Ferritin Protein Gene in Pleurotus eryngii and Its Biological Activity

큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성

  • Woo, Yean Jeong (Department of Natural Resources, Graduate School, Daegu University) ;
  • Oh, Si Yoon (Department of Natural Resources, Graduate School, Daegu University) ;
  • Choi, Jang Won (Department of Natural Resources, Graduate School, Daegu University)
  • 우연정 (대구대학교 대학원 자연자원학과) ;
  • 오시윤 (대구대학교 대학원 자연자원학과) ;
  • 최장원 (대구대학교 대학원 자연자원학과)
  • Received : 2019.11.19
  • Accepted : 2019.12.17
  • Published : 2019.12.31

Abstract

To optimize the expression and secretion of ferritin protein associated with ion storage in the mushroom, Pleurotus eryngii, a recombinant secretion vector, harboring the ferritin gene, was constructed using a pPEVPR1b vector under the control of the CaMV 35S promoter and signal sequence of pathogen related protein (PR1b). The ferritin gene was isolated from the T-Fer vector following digestion with EcoRI and HindIII. The gene was then introduced into the pPEVPR1b secretion vector, and it was then named pPEVPR1b-Fer. The recombinant vector was transferred into P. eryngii via Agrobacterium tumefaciens-mediated transformation. The transformants were selected on MCM medium supplemented with kanamycin and its expression was confirmed by SDS-PAGE and western blotting. Expression of ferritin protein was optimized by modifying the culture conditions such as incubation time and temperature in batch and 20 L airlift type fermenter. The optimal conditions for ferritin production were achieved at 25℃ and after incubating for 8 days on MCM medium. The amount of ferritin protein was 2.4 mg/g mycelia, as measured by a quantitative protein assay. However, the signal sequence of PR1b (32 amino acids) seems to be correctly processed by peptidase and ferritin protein may be targeted in the apoplast region of mycelia, and it might not be secreted in the culture medium. The iron binding activity was confirmed by Perls' staining in a 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in P. eryngii mycelia. Mycelium powder containing ferritin was tested as a feed additive in broilers. The addition of ferritin powder stimulated the growth of young broilers and improved their feed efficiency and production index.

큰느타리버섯에서 철 저장과 관련된 페리틴 단백질의 발현 및 분비를 최적화하기 위해, T-Fer 벡터에 EcoRI 및 HindIII처리를 해 페리틴 유전자를 얻은 후, BamHI으로 처리된 선형의 pPEVPR1b 분비 벡터에 클로닝하여pPEVPR1b-Fer 재조합 벡터를 구축한 다음 Agrobacterium tumefaciens LBA4404 로 도입하였다. Agrobacterium tumefaciens-mediated transformation 방법에 의해 Pleurotus eryngii로 형질전환하고 kanamycin함유된 MCM 배지에서 올바른 형질전환체를 선별하였고, 단백질 발현은 SDS-PAGE 및 항원항체 반응에 의한 western blot으로 확인하였다. 페리틴 단백질의 분비 발현은 batch culture 및 20 L airlift type fermenter에서 배양 시간 및 온도와 같은 배양 조건에 의해 최적화되었다. 페리틴 생산을 위한 배양 조건은 MCM 배지에서 25℃ 및 8 일 배양에 의해 최적화되었다. 페리틴 단백질의 양은 정량적 단백질 분석에 의해 2.4 mg/g mycelium으로 측정되었다. 그러나, PR1b (32 amino acid)의 분비서열은 큰느타리버섯 내부의 peptidase에 의해 정확하게 processing되지 않았지만, 페리틴 단백질은 균사체에서 최대로 전체단백질의 24.7% 발현되었고, 배양액에서는 검출되지 않았다. 철 결합 활성은 7.5% non-denaturing gel에서 Perls' staining에 의해 확인되었으며, 다량체 페리틴(24 subunits)이 P. eryngii 균사체에서 형성되었음을 보여준다. 생물학적 활성 측정을 위하여 페리틴을 함유한 분말을 제조하여 육계의 사료 첨가제로서의 사용 가능성에 대해 시험하였으며, 결과적으로 페리틴은 육계의 성장을 촉진하고 사료 효율 및 생산 지수를 향상시키는것으로 확인되었다.

Keywords

References

  1. Rodriguez Estrada AE, Royse DJ. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hull/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresour Technol 2007;98:1898-906. https://doi.org/10.1016/j.biortech.2006.07.027
  2. Zadrazil F. Mushroom Science IX (Part I). In proceedings of the 9th international scientific congress on the cultivation of edible fungi; 1974. p. 621-52.
  3. Alexander D, Goodman RM, Gut-Rella M, Glascock C. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-realted protein1a. Proc Natl Acad Sci 1993;90:7327-31. https://doi.org/10.1073/pnas.90.15.7327
  4. Jeong BR, Chung SM, Baek NJ, Koo KB, Baik HS, Joo HS, Chang CS, Choi JW. Characterization, cloning, and expression of the ferritin gene from the Korean polychaete, Periserrula leucophryna. J Microbiol 2006;44:54-63.
  5. Bundock P, Dulk-Ras AD, Beijersbergen A, Hooykass PJJ. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 1995;14:3206-14. https://doi.org/10.1002/j.1460-2075.1995.tb07323.x
  6. Hooykaas PJJ, Snijdewindt FGM, Schilperoort RA. Identification of the sym plasmid of Rhizobium leguminosarum strain1001 and its transfer to and expression in other rhizobia and Agrobacterium tumefaciens. Plasmid 1982;8:73-82. https://doi.org/10.1016/0147-619X(82)90042-7
  7. Wei X, Zhu C, Zhu B. An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium aceremonium mediated by Agrobacterium tumefaciens. Biotechnol 2005;15:683-88
  8. Choi JW. Secretion of ferritin protein of Periserrula leucophyryna in Bacillus subtilis and its feed efficiency. KSBB J 2016;31:105-12. https://doi.org/10.7841/ksbbj.2016.31.2.105
  9. Park HS, Choi JW. Functional expression of bovine growth hormone gene in Pleurotus erygii. Biotechnol Bioproc Eng 2014;19:33-42. https://doi.org/10.1007/s12257-013-0651-3
  10. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning, a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989. p. 541-8.
  11. Holster M, Waele DD, Depicker A, Messens E, van Montagu M, Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 1978;163:181-7. https://doi.org/10.1007/BF00267408
  12. Michielse CB, Salim K, Ragas P, Ram AF, Kudla B, Jarry B, Punt PJ, van den Hondel CA. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium -mediated DNA transfer. Mol Genet Genomic 2004;271:499-510. https://doi.org/10.1007/s00438-004-1003-y
  13. Chung SJ, Kim S, Sapkota K, Choi BK, Shin C, Kim SJ. Expression of recombinant human interleukin-32 in Pleurotus eryngii. Ann Microbiol 2011;61:331-8. https://doi.org/10.1007/s13213-010-0146-9
  14. Lammlie UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5. https://doi.org/10.1038/227680a0
  15. Perls M. Nachweis von eisenoxyd in gweissen pigmenten. Archiv F Pathol Anat 1867;39:42-8. https://doi.org/10.1007/BF01878983
  16. Owens FN, Secrist DS, Hill WJ, Gill DR. The effect of grain source and grain processing on performance of feedlot cattle. J Anim Sci 1997;75:868-79. https://doi.org/10.2527/1997.753868x
  17. Farran I, Sanchez-Serrano JJ, Medina JF, Prieto J, Mingo-Castel AM. Targeted expression of human serum albumin to potato tubers. Transgenic Res 2002;11:337-46. https://doi.org/10.1023/A:1016356510770
  18. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 2002;20:200-6. https://doi.org/10.1016/S0167-7799(02)01933-9
  19. Massover WH, Cowley JM. The ultrastructure of ferritin macromolecules, the lattice structure of the core crystallites. Proc Natl Acad Sci 1973;70:3847-51. https://doi.org/10.1073/pnas.70.12.3847
  20. Banyard SH, Stammers DK, Harrison PM. Electron density map of apoferritin at 2.8-A resolution. Nature 1978;271:282-4. https://doi.org/10.1038/271282a0
  21. Yang CY, Meagher A, Huynh BH, Sayers DE, Theil EC. Iron(III) clusters bound to horse spleen apoferritin: an X-ray absorption and mossbauer spectroscopy study that shows that iron nuclei can form on the protein. Biochemistry 1987;26:497-503. https://doi.org/10.1021/bi00376a023
  22. Theil EC. Ferritin: structure, gene, regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 1987;56:289-315. https://doi.org/10.1146/annurev.bi.56.070187.001445