DOI QR코드

DOI QR Code

Production of Anti-dementia Acetylcholinesterase Inhibitor from Pleurotus ostreatus (Heuktari) and Inhibitory Effect on PC12 Neuron Apoptosis

흑타리버섯으로부터 항치매성 Acetylcholinesterase 저해물질의 생산 및 PC12 신경세포사 저해 효과

  • Han, Sang-Min (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Kim, Ji-Yoon (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Lee, Jong-Soo (Department of Biomedicinal Science and Biotechnology, Paichai University)
  • 한상민 (배재대학교 바이오.의생명공학과) ;
  • 김지윤 (배재대학교 바이오.의생명공학과) ;
  • 이종수 (배재대학교 바이오.의생명공학과)
  • Received : 2019.08.27
  • Accepted : 2019.10.07
  • Published : 2019.12.31

Abstract

To develop a new antidementia acetycholinesterase (AChE) inhibitor from edible mushrooms, the inhibitory effects on AChE of water and ethanol extracts from various edible mushrooms were measured. Among the tested compounds, 70% ethanol extracts from Tremella fuciformis showed the highest AChE inhibitory activity, at 25.3% (IC50: 9.9 mg). Water extracts from the fruiting body of Pleurotus ostreatus (Heuktari) showed AChE inhibitory activity of 20.2% (IC50: 12.4 mg). However, the yield (40.8%) from Pleurotus ostreatus (Heuktari) was higher than that from Tremella fuciformis (5.0%). Therefore, we selected Pleurotus ostreatus (Heuktari) as the most promising candidate for a mushroom containing anti-dementia AChE inhibitors. The AChE inhibitor from Pleurotus ostreatus (Heuktari) was optimally extracted when its fruiting body was treated with water for 6 h at 30℃. The anti-dementia effects of the partially purified AChE inhibitor from Pleurotus ostreatus (Heuktari) were observed in PC12 nerve cells.

본 연구에서는 버섯으로부터 항치매성 건강소재를 개발하고자 주요 식용 및 약용 버섯들의 물과 에탄올 추출물들을 제조한 후 이들의 수율과 acetylcholinesterase 저해활성을 측정하여 우수 버섯을 선발하였다. 또한 선발된 우수버섯에 함유되어있는 항치매성 acetylcholinesterase 저해 물질의 추출 최적조건을 검토하였고, 이 저해물질을 부분정제한 후 PC12 신경세포사 저해 활성을 측정하여 항치매 효능을 검증하였다. 시료 버섯들의 물 추출물과 70% 에탄올 추출물을 각각 제조하여 이들의 acetylcholinesterase 저해 활성을 측정한 결과 물 추출물의 수율이 40%로 높고 acetylcholinesterase 저해 활성도 20.2% (IC50: 12.4 mg)로 우수한 흑타리버섯을 acetylcholinesterase 저해물질을 함유한 우수 버섯으로 최종 선발하였다. 흑타리버섯 자실체중의 항치매성 acetylcholinesterase 저해물질의 추출 최적 조건은 흑타리버섯 분말을 1:30으로 증류수에 현탁 시킨 후 30℃에서 6시간 추출하는 조건이었다. 흑타리버섯 자실체의 항치매성 acetylcholinesterase 저해물질을 한외여과와 gel 여과 등으로 부분정제한 후 신경세포 PC12의 세포치사 억제에 미치는 영향을 조사한 결과 부분정제 물질을 50 ㎍/mL 처리했을 때 세포치사율이 17.0%로 낮아져서 흑타리버섯 부분정제물이 치매 진행과정을 억제하거나 지연시키는 효과를 보이는 것으로 사료된다.

Keywords

References

  1. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimer's disease. Subcell Biochem 2012;65:329-52. https://doi.org/10.1007/978-94-007-5416-4_14
  2. Dugu M, Neugroschl J, Sewell M, Marin D. Review of dementia. Mt Sinai J Med 2003;70:45-53.
  3. Lee EN, Song JH, Lee JS. Screening of a potent antidementia acetylcholinesterase inhibitorcontaining fruits and optimal extraction conditions. Korean J Food & Nutr 2010;23:318-23.
  4. Lee JS, Min GH, Lee JS. Nutritional and physicochemical characteristics of the antidementia Acetylcholinesterase-inhibiting methanol extracts from Umbilicaria esculenta. Mycobiology 2009;37:203-6. https://doi.org/10.4489/MYCO.2009.37.3.203
  5. Kwak JH, Jeong CH, Kim JH, Choi GN, Shin YH, Lee SC, Cho SH, Choi SG, Heo HJ. Acetylcholinesterase inhibitory effect of green tea extracts according to storage condition. Korean J Food Sci Technol 2009;41:435-40.
  6. Jang CH, Eun JS, Park HW, Seo SM, Yang JH, Leem KH, Oh SH, Oh CH, Baek NI, Kim DK. An acetylcholinesterase inhibitor from the leaves of Securinega suffruticosa. Korean J Pharmacogn 2003;34:14-7.
  7. Ahmad I, Anis I, Malik A, Nawaz SA, Choudhary MI. Cholinesterase inhibitory constituents from Onosma hispida. Chem Pharm Bull (Tokyo) 2003;51:412-4. https://doi.org/10.1248/cpb.51.412
  8. Tang XC, Han YF. Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Rev 1999;5:281-300. https://doi.org/10.1111/j.1527-3458.1999.tb00105.x
  9. Kim DY, Bae SM, Han SM, Lee JS. Screening of potent anti-dementia acetylcholinesterase inhibitor-containing edible mushroom Pholiota adiposa and the optimal extraction conditions for the acetylcholinesterase inhibitor. Kor J Mycol 2016;44:314-7. https://doi.org/10.4489/KJM.2016.44.4.314
  10. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  11. Seo DS, Jang JH, Kim NM, Lee JS. Optimal extraction condition and characterization of antidementia acetylcholinesterase inhibitor from job's tears (Coix lachrymajobi L.). Korean J Med Crop Sci 2009;17:434-8.
  12. Lee DH, Lee JS, Yi SH, Lee JS. Production of the acetylcholinesterase inhibitor from Yarrowia lipolytica S-3. Mycobiology 2008;36:102-5. https://doi.org/10.4489/MYCO.2008.36.2.102
  13. Lee DH, Kim JH, Park JS, Choi YJ, Lee JS. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides 2004;25:621-7. https://doi.org/10.1016/j.peptides.2004.01.015
  14. Jang JH, Jeong SC, Kim JH, Lee YH, Ju YC, Lee JS. Characterization of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem 2011;127:412-8. https://doi.org/10.1016/j.foodchem.2011.01.010
  15. Yu HE, Lee DH, Seo GS, Cho SM, Lee JS. Characterization of a novel $\beta$-hydroxy-$\beta$-methyl glutaryl coenzyme A reductaseinhibitor from the mushroom, Pholiota adiposa. Biotechnol Bioprocess Eng 2007;12:618-24. https://doi.org/10.1007/BF02931077
  16. Choi HY, Ha KS, Jo SH, Ka EH, Chang HB, Kwon YI. Antioxidant and anti-hyperglycemic effects of a Sanghwang mushroom (Phellinus linteus ) water extract. Kor J Food & Nutr 2012;25:239-45. https://doi.org/10.9799/ksfan.2012.25.2.239
  17. Bae SM, Han SM, Lee YH, Jung YK, Ji JH, Lee JS. Extraction and characterization of an anti-hyperglycemic $\alpha$-glucosidase inhibitor from edible mushroom, Pleurotus cornucopiae. Microbiol Biotechnol Lett 2016;44:124-9. https://doi.org/10.4014/mbl.1602.02001
  18. Lee JK, Jang JH, Seo GS, Lee JS. Manufacture and characteristics of food additives, Phellineus linteus powder-containing anti-obesity lipase inhibitor. Kor J Mycol 2010;38:54-6. https://doi.org/10.4489/KJM.2010.38.1.054
  19. Kang MG, Bolormaa Z, Lee JS, Seo GS, Lee JS. Antihypertensive activity and anti-gout activity of mushroom Sarcodon aspratus. Kor J Mycol 2011;39:53-6. https://doi.org/10.4489/KJM.2011.39.1.053
  20. Bolormaa Z, Song JH, Seo GS, Noh HJ, Yoo YB, Lee JS. Screening of anti-gout xanthine oxidase inhibitor from mushrooms. Kor J Mycol 2010;38:85-7. https://doi.org/10.4489/KJM.2010.38.1.085
  21. Jang IT, Hyun SH, Shin JW, Lee YH, Ji JH, Lee JS. Characterization of an anti-gout xanthine oxidase inhibitor from Pleurotus ostreatus. Mycobiology 2014;42:296-300. https://doi.org/10.5941/MYCO.2014.42.3.296
  22. Mizuno T, Kinoshit T, Zhung C, Ito H, Mayuzumi Y. Antitumor-active heteroglycans from niohshimeji mushroom, Tricholoma giganteum. Biosci Biotechnol Biochem 1995;59:568-71. https://doi.org/10.1271/bbb.59.568
  23. Park JS, Hyun KW, Seo SB, Cho SM, Yoo CH, Lee JS. Detection of platelet aggregation inhibitors and fibrinolytic substancesfrom mushrooms. Kor J Mycol 2003;31:114-6. https://doi.org/10.4489/KJM.2003.31.2.114
  24. Hyun KW, Jeong SC, Lee DH, Park JS, Lee JS. Isolation and characterization of a novel platelet aggregation inhibitory peptide from the medicinal mushroom, Inonotus obliquus . Peptides 2006;27:1173-8. https://doi.org/10.1016/j.peptides.2005.10.005
  25. Koo KC, Lee DH, Kim JH, Yu HE, Park JS, Lee JS. Production and characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Pholiota adiposa. J Microbiol Biotechnol 2006;16:757-63.
  26. Kang MG, Kim YH, Bolormaa Z, Kim MK, Seo GS, Lee JS. Characterization of an antihypertensive angiotensin I-converting enzyme inhibitory peptide from the edible mushroom Hypsizygus marmoreus. Biomed Res Int 2013;2013:2839-64.
  27. Jang JH, Lee JW, Kim JH, Lee YH, Ju YC, Lee JS. Isolation and identification of RANKLinduced osteoclast differentiation inhibitor from Pleurotus citrinopileatus. Mycoscience 2013:54;265-70. https://doi.org/10.1016/j.myc.2012.08.009
  28. Kim SH, Suh YH. Neurotoxicity of a carboxyl-terminal fragment of the Alzheimer's amyloid precursor protein. J Neurochem 1996;67:1172-82. https://doi.org/10.1046/j.1471-4159.1996.67031172.x
  29. Kim JY, Lee SY, Han SM, Lee JS. Production of anti-dementia Acetylcholinesterase inhibitors from the wild yeasts Saccharomyces cerevisiae WJSL0113 and Wickerhamomyces anomalus JSF0128. Kor J Mycol 2018;46:447-57. https://doi.org/10.4489/KJM.20180049
  30. 0Choi JI, Lee YH, Ha TM, Jeon DH, Chi JH, Shin PG. Characteristics of new mid-high temperature adaptable oyster mushroom variety Heuktari for bottle culture. J Mushrooms 2015;13:74-8. https://doi.org/10.14480/JM.2015.13.1.74