Accuracy evaluation of treatment plan according to CT scan range in Head and Neck Tomotherapy

두경부 토모테라피 치료 시 CT scan range에 따른 치료계획의 정확성 평가

  • Kwon, Dong Yeol (Department of Radiation Oncology, Samsung Medical Center) ;
  • Kim, Jin Man (Department of Radiation Oncology, Samsung Medical Center) ;
  • Chae, Moon Ki (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Tae Yang (Department of Radiation Oncology, Samsung Medical Center) ;
  • Seo, Sung Gook (Department of Radiation Oncology, Samsung Medical Center) ;
  • Kim, Jong Sik (Department of Radiation Oncology, Samsung Medical Center)
  • 권동열 (삼성서울병원 방사선종양학과) ;
  • 김진만 (삼성서울병원 방사선종양학과) ;
  • 채문기 (삼성서울병원 방사선종양학과) ;
  • 박태양 (삼성서울병원 방사선종양학과) ;
  • 서성국 (삼성서울병원 방사선종양학과) ;
  • 김종식 (삼성서울병원 방사선종양학과)
  • Published : 2019.12.27

Abstract

Purpose: CT scan range is insufficient for various reasons in head and neck Tomotherapy®. To solve that problem, Re-CT simulation is good because CT scan range affects accurate dose calculations, but there are problems such as increased exposure dose, inconvenience, and a change in treatment schedule. We would like to evaluate the minimum CT scan range required by changing the plan setup parameter of the existing CT scan range. Materials and methods: CT Simulator(Discovery CT590 RT, GE, USA) and In House Head & Neck Phantom are used, CT image was acquired by increasing the image range from 0.25cm to 3.0cm at the end of the target. The target and normal organs were registered in the Head & Neck Phantom and the treatment plan was designed using ACCURAY Precision®. Prescription doses are Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy. Target is designed to 95%~107% of prescription dose and normal organ dose is designed according to SMC Protocol. Under the same treatment plan conditions, Treatment plans were designed by using five methods(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm) and two pitches(0.43, 0.287). The accuracy of dose delivery for each treatment plan was analyzed by using EBT3 film and RIT(Complete Version 6.7, RIT, USA). Results: The accurate treatment plan that satisfying the prescribed dose of Target and the tolerance dose in normal organs(SMC Protocol) require scan range of at least 0.25cm for Fixed-1cm, 0.75cm for Fixed-2.5cm, 1cm for Dynamic-2.5cm, and 1.75cm for Fixed-5cm and Dynamic-5cm. As a result of AnalysisAnalysis by RIT. The accuracy of dose delivery was less than 3% error in the treatment plan that satisfied the SMC Protocol. Conclusion: In case of insufficient CT scan range in head and neck Tomotherapy®, It was possible to make an accurate treatment plan by adjusting the FW among the setup parameter. If the parameter recommended by this author is applied according to CT scan range and is decide whether to re-CT or not, the efficiency of the task and the exposure dose of the patient are reduced.

목 적: 두경부 토모테라피 치료 시 다양한 이유로 CT scan range가 부족한 상황이 발생한다. CT scan range는 정확한 선량 계산에 영향을 주기 때문에 Re-CT Simulation이 좋지만 환자의 피폭선량 증가와 불편함, 치료일정 변경 등 문제점을 갖는다. 이에 본 저자는 기존 CT scan range에서 Plan setup parameter 변화를 통해 Re-CT Simulation 없이 정확한 치료계획에 필요한 최소한의 CT scan range를 평가해보고자 한다. 대상 및 방법: CT simulator(Discovery CT590 RT, GE, USA)와 In House Head & Neck Phantom을 이용하였고, Target의 끝단에서 0.25~3.0cm까지 0.25cm씩 증가시켜 CT scan range 별 이미지를 획득하였다. Target과 정상 장기를 Head & Neck Phantom에 등록하고 ACCURAY Precision® 이용하여 치료계획을 설계하였다. 처방 선량은 Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy, Target은 처방 선량의 95~107%, 정상 장기는 SMC Protocol에 맞춰 치료계획을 설계하였다. 동일한 치료계획 조건에서 Field Width(FW)와 Jaw 모드를 고려한 5가지 방법(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm)과 2가지 Pitch(0.43, 0.287)의 Plan Setup parameter로 치료계획을 설계하였다. 각 치료계획에 대한 선량 전달의 정확성은 EBT3 film과 RIT(Complete Version 6.7, RIT, USA)를 이용하여 분석하였다. 결 과: Target의 처방 선량과 정상 장기의 견딤선량(Tolerance dose)을 만족한 치료계획(SMC Protocol)은 Fixed-1cm은 0.25cm 이상, Fixed-2.5cm는 0.75cm 이상, Dynamic-2.5cm는 1cm 이상, Fixed-5cm과 Dynamic-5cm인 경우는 1.75cm 이상의 Scan range가 있어야 정확한 치료계획을 할 수 있었다. 선량 전달의 정확성은 RIT로 분석한 결과 SMC Protocol을 만족한 치료계획에서 3% 미만의 오차였다. 결 론: 두경부 토모테라피 치료 시 CT scan range가 부족한 경우 Plan Setup Parameter 중 Field Width(FW)를 조절하여 정확한 치료계획을 설계할 수 있었다. 이에 본 저자가 추천한 Plan Setup Parameter를 CT scan range에 따라 적용하고 Re-CT 여부를 판단한다면 업무의 효율성 및 환자의 피폭선량을 감소시킬 수 있을 것으로 사료된다.

Keywords

References

  1. Mackie TR: History of tomotherapy. Phys Med. Biol. 2006 Jul 7;51(13):427-53. https://doi.org/10.1088/0031-9155/51/13/R24
  2. Saibishkumar EP, Jha N, Scrimger RA et al.: Sparing the parotid glands and surgically transferred submandibular gland with helical tomotherapy in post-operative radiation of head and neck cancer: a planning study. Radiother Oncol. 2007 Oct;85(1):98-104. https://doi.org/10.1016/j.radonc.2007.09.014
  3. Hong CS, Oh D, Ju SG, et al.: Carotid-sparing tomohelical 3-dimensional conformal radiotherapy for early glottic cancer. Cancer Res Treat. 2016;48:63-70. https://doi.org/10.4143/crt.2014.265
  4. 김진성, 윤명근, 박성용 등: 방사선치료 관련 연구를 위한 선량 체적 히스토그램 분석 프로그램 개발. 대한방사선종양학회지. 2009;27:240-248.
  5. Brenner DJ, Hall EJ: Computed tomography-an increasing source of radiation exposure. N Engl J Med. 2007 Nov 29;357(22):2277-84. https://doi.org/10.1056/NEJMra072149
  6. Khan FM: Khan의 방사선치료 물리학. 제5판. 바이오메디북. 2016;428.
  7. 신정석, 한영이, 주상규 등: 영상유도 및 호흡동조 방사선치료에서의 영상장비에 의한 흡수선량 분석. 대한방사선종양학회지. 2009;27:42-48.
  8. 송주영, 나병식, 정웅기 등: 토모테라피에서 계획용표적체적 설정 시 필드 폭 영향 분석. Korean journal of medical physics. 2010;21(4):323-331.
  9. Lee FK, Chan SK, Chau RM et al.: Dosimetric verification and quality assurance of running-startstop(RSS) delivery in tomotherapy. J Appl Clin Med Phys. 2015 Nov 8;16(6):23-29. https://doi.org/10.1120/jacmp.v16i6.5336
  10. Sterzing F, Uhl M, Hauswald H et al.: Dynamic jaws and dynamic couch in helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010 Mar 15;76(4):1266-73. https://doi.org/10.1016/j.ijrobp.2009.07.1686
  11. Shimizu H, Sasaki K, Kubota T et al.: Interfacility variation in treatment planning parameters in tomotherapy: field width, pitch, and modulation factor. J Radiat Res. 2018 Sep 1;59(5):664-668. https://doi.org/10.1093/jrr/rry042
  12. Kissick MW, Fenwick J, James JA et al.: The helical tomotherapy thread effect. Med Phys. 2005 May;32(5):1414-23. https://doi.org/10.1118/1.1896453
  13. Marks LB, Yorke ED, Jackson A et al.: Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3):S10-S19. https://doi.org/10.1016/j.ijrobp.2009.07.1754
  14. Emami B: Tolerance of Normal Tissue to Therapeutic Radiation. Radiother Oncol. 2013;1(1):25-48.
  15. Feuvret L, Noe l G, Mazeron JJ et al.: Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006 Feb 1;64(2):333-342. https://doi.org/10.1016/j.ijrobp.2005.09.028
  16. Moldovan M, Fontenot JD, Gibbons JP.: Investigation of pitch and jaw width to decrease delivery time of helical tomotherapy treatments for head and neck cancer. Med Dosim. 2011 Winter;36(4):397-403. https://doi.org/10.1016/j.meddos.2010.10.001
  17. Sugie C, Manabe Y, Hayashi A et al.: Efficacy of the Dynamic Jaw Mode in Helical Tomotherapy With Static Ports for Breast Cancer. Technol Cancer Res Treat. 2015 Aug;14(4):459-465. https://doi.org/10.1177/1533034614558746
  18. 정원석, 백종걸, 신령미 등: 선속 폭(Field Width) 변화에 따른 종축선량 분석. 대한방사선치료학회지. 2011;23(2):109-117.
  19. Hill M: The variation in biological effectiveness of X-rays and Gamma rays with energy. Radiat Prot Dosimetry 2004;112:471-481. https://doi.org/10.1093/rpd/nch091
  20. Joiner MC, Marples B, Lambin P et al.: Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 2001;49:379-389. https://doi.org/10.1016/S0360-3016(00)01471-1
  21. Schneider U: Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009 Apr;36(4):1138-43. https://doi.org/10.1118/1.3089792