DOI QR코드

DOI QR Code

수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석

Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles

  • Han, Youkyung (School of Convergence & Fusion System Engineering, Kyungpook National University) ;
  • Kim, Taeheon (Dept. of Geospatial Information, Kyungpook National University) ;
  • Kim, Yeji (Satellite Application Division, Korea Aerospace Research Institute) ;
  • Lee, Jeongho (Satellite Application Division, Korea Aerospace Research Institute)
  • 투고 : 2019.11.20
  • 심사 : 2019.12.06
  • 발행 : 2019.12.31

초록

본 연구는 KOMPSAT-3 및 3A호 영상 간 상호좌표등록을 수행할 당시에 두 영상이 보이는 수렴각(convergence angle)의 크기에 따라서 상호좌표등록의 정확도가 어떻게 달라지는지에 대한 분석을 수행하였다. 고해상도 위성영상의 메타데이터에서 제공하는 영상의 좌표정보를 이용하여 영상 정합을 수행하기 위한 탐색영역을 줄일 수 있으므로, 본 연구에서는 좁은 탐색영역에서 정합 신뢰도가 높은 영역기반 정합쌍 추출 기법 중 하나인 상호정보(mutual information) 기법을 활용하였다. 상대적으로 해상도가 낮은 다중분광 영상을 이용하여 초기 상호좌표등록을 수행하여 초기 위치관계를 파악하고, 보다 정밀한 상호좌표등록을 위해 전정색 영상의 관심대상지역을 중심으로 정밀 상호좌표등록을 수행하였다. 대전지역에서 촬영된 16장의 KOMPSAT-3 및 3A호 영상으로 120개의 조합을 구성하여 실험을 수행하였다. 실험결과, 영상 간 수렴각 크기와 상호좌표등록 정확도 사이의 상관계수 값은 0.59를 보였고, 영상 간의 수렴각 크기가 클수록 상호좌표등록 정확도가 떨어지는 경향을 보이는 것을 확인하였다.

This study analyzed how the accuracy of co-registration varies depending on the convergence angles between two KOMPSAT-3·3A images. Most very-high-resolution satellite images provide initial coordinate information through metadata. Since the search area for performing image co-registration can be reduced by using the initial coordinate information, in this study, the mutual information method showing high matching reliability in the small search area is used. Initial coarse co-registration was performed by using multi-spectral images with relatively low resolution, and precise fine co-registration was conducted centering on the region of interest of the panchromatic image for more accurate co-registration performance. The experiment was conducted by 120 combination of 16 KOMPSAT-3·3A 1G images taken in Daejeon area. Experimental results show that a correlation coefficient between the convergence angles and fine co-registration errors was 0.59. In particular, we have shown the larger the convergence angle, the lower the accuracy of co-registration performance.

키워드

참고문헌

  1. Chen, H.M., Arora, M.K., and Varshney, P.K. (2003), Mutual information-based image registration for remote sensing data, International Journal of Remote Sensing, Vol. 24, No. 18, pp. 3701-3706. https://doi.org/10.1080/0143116031000117047
  2. Han, Y.K. (2013), Automatic Image-to-image Registration between High-resolution Multisensor Satellite Data in Urban Areas, Ph.D. dissertation, Seoul National University, Seoul, Korea, 146p
  3. Han, Y.K., Kim, T.H., and Yeom, J.H. (2019), Improved piecewise linear transformation for precise warping of very-highresolution remote sensing images, Remote Sensing, Vol. 11, No. 19, pp. 2235. https://doi.org/10.3390/rs11192235
  4. Han, Y.K. and Oh, J.H. (2018), RNCC-based fine co-registration of multi-temporal RapidEye satellite imagery, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 6, pp. 581-588. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.6.581
  5. Jeong, J.H. (2016), Analysis of correlation between geometry elements for the efficient use of satellite stereo images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 5, pp. 471-478. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.5.471
  6. Jeong, J., Yang, C., and Kim, T. (2015), Geo-positioning accuracy using multiple-satellite images: IKONOS, QuickBird, and KOMPSAT-2 stereo images, Remote Sensing, Vol. 7, No. 4, pp. 4549-4564. https://doi.org/10.3390/rs70404549
  7. KARI and SIIS, (2019a), KOMPSAT-3 Product Specifications: Image Data Manual, SI Imaging Services, http://si-imaging.com/resources/?uid=336&mod=document (last date accessed: 18 November 2019).
  8. KARI and SIIS, (2019b), KOMPSAT-3A Product Specifications: Image Data Manual, SI Imaging Services, http://si-imaging.com/resources/?uid=337&mod=document (last date accessed: 18 November 2019).
  9. Li, R., Niu, X., Liu, C., Wu, B., and Deshpande, S. (2009), Impact of imaging geometry on 3D geopositioning accuracy of stereo IKONOS imagery, Photogrammetric Engineering & Remote Sensing, Vol. 75, No. 9, pp. 1119-1125. https://doi.org/10.14358/pers.75.9.1119
  10. Li, R., Zhou, F., Nui, X., and Di, K. (2007), Integration of Ikonos and QuickBird imagery for geopositioning accuracy analysis, Photogrammetric Engineering & Remote Sensing, Vol. 73, No. 9, pp. 1067-1074.
  11. Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., and Tian, J. (2015), Robust feature matching for remote sensing image registration via locally linear transforming, IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 12, pp. 6469-6481. https://doi.org/10.1109/TGRS.2015.2441954
  12. Oh, K.Y., Jeong, E.C., Lee, K.J., Kim, Y.S., and Lee, W.J. (2018), Comparison and analysis of matching DEM using KOMPSAT-3 in/cross-track stereo pair, Korean Journal of Remote Sensing, Vol. 34, No. 6-3, pp. 1445-1456. (in Korean with English abstract). https://doi.org/10.7780/KJRS.2018.34.6.3.10
  13. Viola, P. and Wells III, W.M. (1997), Alignment by maximization of mutual information, International journal of computer vision, Vol. 24, No. 2, pp. 137-154. https://doi.org/10.1023/A:1007958904918
  14. Zitova, B. and Flusser, J. (2003), Image registration methods: a survey, Image and Vision Computing, Vol. 21, No. 11, pp. 977-1000. https://doi.org/10.1016/S0262-8856(03)00137-9