DOI QR코드

DOI QR Code

Evaluation of Sejong Base as a Long Term Monitoring Site for Chromophoric Dissolved Organic Matter (CDOM) Variation in the Antarctic Ocean

남극해 유색 용존 유기물질의 장기 변동성 모니터링을 위한 세종 기지의 활용 가능성 평가

  • Jeon, Mi-Hae (Pukyong National University, Department of Oceanography) ;
  • Park, Mi-Ok (Pukyong National University, Department of Oceanography) ;
  • Kang, Sung-Ho (Korea Polar Research Institute, Division of Polar Ocean Sciences) ;
  • Jeon, Misa (Korea Polar Research Institute, Division of Polar Ocean Sciences)
  • 전미해 (부경대학교 해양학과) ;
  • 박미옥 (부경대학교 해양학과) ;
  • 강성호 (한국해양과학기술원 부설 극지연구소 극지해양과학연구부) ;
  • 전미사 (한국해양과학기술원 부설 극지연구소 극지해양과학연구부)
  • Received : 2019.08.26
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

As the positive feedback between the absorption of chromophoric dissolved organic matter (CDOM) and acceleration of ice melt can impact the aquatic biota and dynamic heat budget, long-term monitoring of the CDOM variation in the polar ocean is necessary. However, the monitoring of CDOM is not easy because of harsh weather and difficult access, especially in the Antarctic Ocean. Therefore, the purpose of this study was to find a suitable long-term monitoring site for CDOM variation; we selected Maxwell Bay and Marian Cove at Sejong Base and horizontal and vertical distributions of CDOM were measured. After a 72 hr time-series measurement test of the CDOM variation at Sejong Dock and Sejong Cape in Maxwell Bay, Sejong Dock was selected, as it does not haveland discharge effects. The seasonal variation of CDOM was evident and the average CDOM concentration of Maxwell Bay was comparable with the adjacent sea. The CDOM at Sejong Dock from February to November 2010 was the highest in the fall and winter and the lowest during spring and summer. Thus, based on our one-year CDOM data, we suggest that Sejong Dock in Maxwell Bay is suitable for long-term monitoring of CDOM as an indicator of photochemical and biological environmental change and an important factor in determining the heating budget in the Antarctic Ocean.

유색 용존 유기물의 빛 흡수와 해빙의 가속화는 수생생태계와 열수지 역동성 간의 양적 피드백에 영향을 줄 수 있으므로 극지 해양에서 유색 용존 유기물의 장기 모니터링이 필요하게 되었다. 그러나 극지 환경에서의 관측은 용이하지 않은 접근성과 거친 기상으로 장기 모니터링이 쉽지 않다. 따라서 유색 용존 유기물의 장기 모니터링 장소로서 남극 세종 기지의 가능성을 확인하기 위해, 마리안 소만과 맥스웰 만에서 유색 용존 유기물의 분포와 외부로부터의 영향을 파악하기 위한 관측을 수행하였다. 맥스웰 만 내의 세종 부두와 세종 곶의 72시간 유색 용존 유기물의 변동성을 관측하고, 외부 영향이 없었던 세종 부두에서 2010년 2월에서 11월까지 10개월간 유색 용존 유기물의 연간 변화와 계절변동을 관측하였다. 세종 부두의 유색 용존 유기물 농도는 가을과 겨울 동안 가장 높고 봄과 여름에 감소하는 뚜렷한 계절 변동성을 보였고, 남극 인근 해역에서 측정된 유색 용존 유기물 농도 자료와 비교하였다. 따라서 우리는 남극해의 열수지에 대한 중요한 요인이자 광화학적 및 생물학적 환경변화에 관한 지시자인 유색 용존 유기물을 장기 모니터링을 위해 적합한 장소로 맥스웰 만의 세종 부두를 제안한다.

Keywords

References

  1. Barbini, R., F. Colao, R. Fantoni, G. M. Ferrari, A. Lai, and A. Palucci(2003), Application of a lidar fluorosensor system to the continuous and remote monitoring of the Southern Ocean and Antarctic Ross Sea: Results collected during the XIII and XV Italian oceanographic campaigns, International Journal of Remote Sensing, Vol. 24, No. 16, pp. 3191-3204. https://doi.org/10.1080/0143116021000021260
  2. Blough, N. V., O. C. Zafiriou, and J. Bonilla(1993), Optical absorption spectra of waters from the Orinoco River outflow: Terrestrial input of colored dissolved organic matter to the Caribbean, Journal of Geophysical Research, Vol. 98, pp. 2271-2278. https://doi.org/10.1029/92JC02763
  3. Blough, N. V. and R. D. Vecchio(2002), Chromophoric DOM in the coastal ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of Marine Dissolved Organic Matter, Academic press, San Diego, pp. 509-546.
  4. Blough, N. V. and S. A. Green(1995), Spectroscopic characterization and remote sensing of nonliving organic matter. In: Zepp R.G., Sonntag C. (eds) The Role of Nonliving organic matter in the Earth's Carbon Cycle, John Wiley and Sons, Berlin, pp. 23-45.
  5. Bricaud, A., M. Babin, H. Claustre, J. Ras, and F. Tieche (2010), Light absorption properties and absorption budget of Southeast Pacific waters, Journal of Geophysical Research, Vol. 115, No. C8.
  6. Brogi, S. R., S. Y. Ha, K. W. Kim, M. Derrien, Y. K. Lee, and J. Hur(2018), Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada): Implication for increased autochthonous DOM during ice melting, Science of the Total Environment, Vol. 627, pp. 802-811. https://doi.org/10.1016/j.scitotenv.2018.01.251
  7. D'Sa, E. J. and H. C. Kim(2017), Surface Gradients in Dissolved Organic Matter Absorption and Fluorescence Properties along the New Zealand Sector of the Southern Ocean, Frontiers in Marine Science, Vol. 4: 21.
  8. Hansell, D. A.(2002), DOC in the Global Ocean Carbon Cycle. Hansell D.A., Carlson C. A. (eds) Biogeochemistry of Marine Dissolved Organic Matter, Academic press, San Diego, pp. 685-715.
  9. Hill, V. J.(2008), Impacts of chromophoric dissolved organic material on surface ocean heating in the Chukchi Sea, Journal of Geophysical Research, Vol. 113, No. C7, pp. C07024.
  10. Kahru, M. and B. G. Mitchell(2001), Seasonal and nonseasonal variability of satellite-derived chlorophyll and dissolved organic matter concentration in the California Current, Journal of Geophysical Research, Vol. 106, pp. 2517-2529. https://doi.org/10.1029/1999JC000094
  11. Kieber, D. J., D. A. Toole, and R. P. Kiene(2009), Chromophoric dissolved organic matter cycling during a Ross Sea Phaeocystis Antarctica bloom. In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the Poles: Contributions to International Polar Year Science-a Smithsonian Contribution to Knowledge, Smithsonian Institute Scholarly Press, Washington DC, pp. 319-333.
  12. Kieber, R. J., L. H. Hydro, and P. J. Seaton(1997), Photooxidation of triglycerides and fatty acids in seawater: Implication toward the formation of marine humic substances, Limnology and Oceanography, Vol 42, No. 6, pp. 1454-1462. https://doi.org/10.4319/lo.1997.42.6.1454
  13. Lee, Y. C., M. O. Park, J. Y. Jung, E. J. Yang, and S. H. Lee(2016), Taxonomic variability of phytoplankton and relationship with production of CDOM in the polynya of the Amundsen Sea, Antarctica, Deep-Sea Research Part II, Vol. 123, pp. 30-41. https://doi.org/10.1016/j.dsr2.2015.09.002
  14. Meiners, K. M., S. Papadimitriou, D. N. Thomas, L. Norman, and G. S. Dieckmann(2009), Biogeochemical conditions and ice algal photosynthetic parameters in Weddell Sea ice during early spring, Polar Biology, Vol. 32, No. 7, pp. 1055-1065. https://doi.org/10.1007/s00300-009-0605-6
  15. Mitchell, B. G., M. Kahru, J. Wieland, and M. Stramska (2002), Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples, in Ocean Optics Protocols for satellite Ocean Color Sensor Validation, edited by Muller J and Fargion LGS, NASA, Hanover, Germany, pp. 231-257.
  16. Mopper, K., X. Zhou, R. J. Kieber, D. J. Kieber, R. J. Sikorski and R. D. Jones(1991), Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle, Nature, Vol. 353, pp. 60-62. https://doi.org/10.1038/353060a0
  17. Nelson, N. B. and D. A. Siegel(2002), Chromophoric DOM in the open ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of Marine Dissolved Organic Matter, Academic press, San Diego, pp. 547-578.
  18. Norman, L., D. N. Tomas, C. A. Stedmon, M. A. Granskog, S. Papadimitriou, R. H. Krapp, K. M. Meiners, D. Lannuzel, P. Merwe, and G. S. Dieckmann(2011), The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice, Deep-Sea Research Part II, Vol. 58, pp. 1075-1091. https://doi.org/10.1016/j.dsr2.2010.10.030
  19. Ortega-Retuerta, E., I. Reche I, E. P. Villena, S. Agusti, and C. M. Duarte(2010), Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic Peninsula, Marine Chemistry, Vol. 118, pp. 129-139. https://doi.org/10.1016/j.marchem.2009.11.008
  20. Pegau, W. S.(2002), Inherent optical properties of the central Arctic surface waters, Journal of Geophysical Research, Vol. 107, No. C10, pp. S16-1-S16-7. https://doi.org/10.1029/2000JC000382
  21. Siegel, D. A. and A. F. Michaels(1996), Quantification of non-algal light attenuation in the Sargasso Sea: Implications for biogeochemistry and remote sensing, Deep-Sea Research Part II, Vol. 43, No. 2-3, pp. 321-345. https://doi.org/10.1016/0967-0645(96)00088-4
  22. Stedmon, C. A., R. M. W. Amon, A. J. Rinehart, and S. A. Walker(2011), The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences., Marine Chemistry, Vol. 124, pp. 108-118. https://doi.org/10.1016/j.marchem.2010.12.007
  23. Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell(2009), Warming of the Antarctic ice-sheet surface since the 1957, International Geophysical Year. nature, Vol. 457, pp. 459-462.
  24. The IMBIE team(2018), Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, Vol. 558, pp. 219-222. https://doi.org/10.1038/s41586-018-0179-y
  25. Thomas, D. N., G. Kattner, R. Engbrodt, V. Giannelli, H. Kennedy, C. Haas, and G. S. Dieckmann(2001), Dissolved organic matter in Antarctic sea ice, Annals of Glaciology, Vol. 33, pp. 297-303. https://doi.org/10.3189/172756401781818338
  26. Twardowski, M. S. and P. L. Donaghay(2001), Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters, Journal of Geophysical Research, Vol. 106, No. C2, pp. 2545-2560. https://doi.org/10.1029/1999JC000039
  27. Underwood, G. J. C., S. Fietz, S. Papadimitriou, D. N. Thomas, and G. S. Dieckmann(2010), Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice, Marine Ecology Progress Series, Vol. 404, pp. 1-19. https://doi.org/10.3354/meps08557
  28. Vodacek, A., N. V. Blough, M. D. DeGrandpre, E. T. Peltzer, and R. K. Nelson(1997), Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation, Limnology and Oceanography, Vol. 42, No. 4, pp. 674-686. https://doi.org/10.4319/lo.1997.42.4.0674