DOI QR코드

DOI QR Code

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8)

동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향

  • Park, Ho-Yong (Design Part, Han Jin Heavy Industries and Construction Co., Ltd.) ;
  • Yoon, Sung-Hwan (Division of Marine System Engineering, Korea Maritime & Ocean University) ;
  • Rho, Beom-Seok (Education & Management Team, Korea Institute of Maritime and Fisheries Technology) ;
  • Lee, Won-Ju (Division of Marine Engineering, Korea Maritime & Ocean University) ;
  • Choi, Jae-Hyuk (Division of Marine System Engineering, Korea Maritime & Ocean University)
  • 박호용 (한진중공업) ;
  • 윤성환 (한국해양대학교 기관시스템공학부) ;
  • 노범석 (한국해양수산연수원) ;
  • 이원주 (한국해양대학교 기관공학부) ;
  • 최재혁 (한국해양대학교 기관시스템공학부)
  • Received : 2019.09.26
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

본 연구에서는 국내외 저탄소 녹색성장을 위한 대안으로서 수소에너지와 그 이용 기술에 대한 관심이 높아지는 추세에 발맞춰 무탄소 연료인 수소를 LNG 의 주성분인 메탄, 메탄-프로판, 메탄-프로판-에탄 동축류 확산화염 내에 첨가하여 화염형상 및 연소생성물에 미치는 영향을 확인하였다. 상온상압 조건의 확산화염에 수소를 단계적으로 첨가하여 실제 생성되는 연소생성물의 변화 추이를 가스 분석기를 이용하여 실험적으로 관찰하였고 확산화염의 형상은 디지털카메라를 이용하여 단계적으로 관찰 하였다. 실험결과에서 확산화염에 수소를 첨가함에 따라 질소산화물의 생성량이 선형에 가깝게 증가하는 경향을 보였다. 이것은 수소의 상대적으로 높은 단열화염온도와 빠른 연소속도가 Thermal NOx의 생성을 촉진했기 때문이다. 반면 이산화탄소의 생성량은 감소하는 경향이 나타났는데 수소를 첨가함에 따라 메탄, 메탄-프로판, 메탄-에탄-프로판의 혼합 확산화염에 포함되어있는 전체 탄소비율이 줄어들어 이산화탄소의 생성량이 감소한 것이다. 이는 선박에서 LNG-수소의 혼합 연료사용으로 인해 온실가스인 이산화탄소를 저감할 수 있는 하나의 방안으로 고려될 수 있다는 것을 의미한다.

Keywords

References

  1. Bazari, Z.(2016), IMO Train the Trainer Course on Energy Efficient Ship Operation, Ship Energy Efficiency Regulations and Related Guidelines, Module 2, p. 12.
  2. Boo, W. C.(2015), A Study on Korean Countermeasures for Controls on Greenhouse Gas Emissions from Ships, Master's Thesis, Inha University.
  3. Kim, D. J.(2017), Methods and Suggestions for Countermeasures of Environmental Regulations in Shipping Industry, Korea Development Bank Survey, No. 740, pp. 59-60.
  4. Lee, B. R.(2013), A Study on the Application of Emission Trading System to reduce Greenhouse Gas from Ships, Korea Maritime and Ocean University.
  5. Park, H. S.(2014), A Study on the State's Responsibility and Implementation on Emission Control of Greenhouse Gas related to Ships, Master's Thesis, Korea Maritime and Ocean University.
  6. Shim, S. M.(2018), Implementation of Greenhouse Gas Reduction Measures by the International Maritime Organization (IMO) and Implications for Korea, IFANS Analysis of Major International Issues, No. 49, p. 12.
  7. Talibi, M., R. Balachandran, and N. Ladommatos(2010), Influence of combusting methane-hydrogen mixtures on compression-ignition engine exhaust emissions and in-cylinder gas composition, University College London.