DOI QR코드

DOI QR Code

Prediction of Broadband Noise for Non-cavitation Hydrofoils using Wall-Pressure Spectrum Models

벽면변동압력을 이용한 비공동 수중익의 광대역소음 예측 연구

  • Choi, Woen-Sug (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Jeong, Seung-Jin (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Shipbuilding and Marine Engineering, Koje College) ;
  • Kim, Min-Jae (Naval System R&D Institute, Agency for Defense Development)
  • 최원석 (서울대학교 조선해양공학과) ;
  • 정승진 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학과) ;
  • 권현웅 (거제대학교 조선해양공학과) ;
  • 김민재 (국방과학연구소)
  • Received : 2019.08.19
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

With the increase in the speed of ships and the size of ocean structures, the importance of flow noise has become increasingly critical in meeting regulatory standards. However, unlike active investigations in aeroacoustics fields for airplanes and trains, which are based on acoustic analogy methods for tonal and broadband frequency noise, only the discrete blade passing frequency noise from propellers is considered in marine fields. In this study, prediction methods for broadband noise in marine propellers and underwater appendages are investigated using FW-H Formulation1B, which can consider the mechanism of primary noise generation of trailing edge noise. The original FW-H Formulation 1B is based on the pressure correlation function tolackitsgeneralityandaccuracy. To overcome these limitations, wall-pressure spectrum models are adopted to improve the generality in fluid mediums. The comparison of the experimental results obtained in air reveals that the proposed model exhibits a higher accuracy within 5 dB. Furthermore, the prediction procedures for broadband noise for hydrofoils are established, and the estimation of broadband noise is conducted based on the results of the computational fluid dynamics.

선박 및 수중구조물의 고속, 대형화 및 요구조건 강화의 추세에 따라 유동소음 예측기술의 중요성이 강조되고 있다. 항공, 철도 등의 공력소음 분야에서는 음향상사법을 이용하여 순음 및 광대역 유동소음에 대해 활발히 연구되고 있는 반면 조선해양분야에서는 수중추진기의 날개주파수소음에 대해서만 일부 고려되고 있다. 본 논문에서는 날개면 형상의 주요 유동소음발생 메커니즘 뒷날소음을 고려 가능한 FW-H Formulation 1B를 이용하여 수중추진기 및 선저부가물의 기초요소인 수중익에 대해 광대역소음 예측기법을 연구하였다. 기존의 FW-H Formulation 1B는 공기 중의 압력상관관계 모델에 기반하여 구성되어 있어 매질에 대한 일반성 및 정확도의 한계를 가지므로 수중환경에 대해 일반성을 가지는 벽면변동압력 모델로 확장하는 방법론을 제시하였다. 공기 중 날개면의 소음계측결과와 비교해 벽면변동압력 모델을 이용할 경우 기존모델의 해석결과 대비 5 dB 이내의 오차로 정확도 관점에서의 유용성을 확인할 수 있었으며 전산유체역학과 벽면변동압력을 이용한 수중환경의 광대역소음해석 절차를 확립하고 수중익의 광대역소음 예측을 수행하였다.

Keywords

References

  1. Abshagen, J. and V. Nejedl(2014), Towed body measurements of flow noise from a turbulent boundary layer under sea conditions, The Journal of the Acoustical Society of America, Vol. 135, No. 2, pp. 637-645. https://doi.org/10.1121/1.4861238
  2. Amiet, R. K.(1976), Noise due to turbulent flow past a trailing edge, Journal of Sound and Vibration, Vol. 47, No. 3, pp. 387-393. https://doi.org/10.1016/0022-460X(76)90948-2
  3. Brooks, T.(1989). Airfoil self-noise and prediction, NASA RP 12181.
  4. Brooks, T. F. and T. H. Hodgson(1981), Trailing edge noise prediction from measured surface pressures, Journal of Sound and Vibration, Vol. 78, No. 1, pp. 69-117. https://doi.org/10.1016/S0022-460X(81)80158-7
  5. Casper, J. and F. Farassat(2004), Broadband trailing edge noise predictions in the time domain, Journal of Sound and Vibration, Vol. 271, No. 1, pp. 159-176. https://doi.org/10.1016/S0022-460X(03)00367-5
  6. Chase, D. M.(1980), Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure, Journal of Sound and Vibration, Vol. 70, No. 1, pp. 29-67. https://doi.org/10.1016/0022-460X(80)90553-2
  7. Chase, D. M.(1987), The Character of the Turbulent Wall Pressure Spectrum at Subconvective Wavenumbers and a Suggested Comprehensive Model, Journal of Sound and Vibration, Vol. 112, No. 1, pp. 125-147. https://doi.org/10.1016/S0022-460X(87)80098-6
  8. Choi, W. S., S. Y. Hong, J. H Song, H. W. Kwon, and C. M. Jung(2017), Prediction of turbulent boundary layer noise on plate using Energy flow analysis, Transactions of Korean Society of Noise and Vibration Engineering, Vol. 27, No. 5, pp. 608-615. https://doi.org/10.5050/KSNVE.2017.27.5.608
  9. Choi, W. S., Y. Choi, S. Y. Hong, J. H. Song, H. W. Kwon, and C. M. Jung(2016), Turbulence-induced noise of a submerged cylinder using a permeable FWH method, International Journal of Naval Architecture and Ocean Engineering, Vol. 8, No. 3, pp. 235-242. https://doi.org/10.1016/j.ijnaoe.2016.03.002
  10. Ciappi, E., S. De Rosa, F. Franco, J. L. Guyader, S. A. Hambric, R. C. K. Leung, and A. D. Hanford(2018), Flinovia-Flow Induced Noise and Vibration Issues and Aspects-II, Springer.
  11. Corcos, G. M.(1964), The structure of the turbulent pressure field in boundary-layer flows, Journal of Fluid Mechanics, Vol. 18, No. 3, pp. 353-378. https://doi.org/10.1017/S002211206400026X
  12. Goody, M.(2004), Empirical Spectral Model of Surface Pressure Fluctuations, AIAA Journal, Vol. 42, No. 9, pp. 1788-1794. https://doi.org/10.2514/1.9433
  13. Howe, M. S.(1998), Acoustics of Fluid-Structure Interactions. Cambridge: Cambridge University Press.
  14. Hwang, Y. F., W. K. Bonness, and S. A. Hambric(2009), Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra, Journal of Sound and Vibration, Vol. 319, No. 1, pp. 199-217. https://doi.org/10.1016/j.jsv.2008.06.002
  15. Parchen, R.(2000), Noise production of ship's propellers and waterjet installations at non-cavitating conditions, Proceedings of the 34th WEGEMT School, TUDelft.
  16. Schlinker, R. H. and R. K. Amiet(1981), Helicopter rotor trailing edge noise, NASA CR-3470.
  17. Tian, Y. and B. Cotte(2016), Wind turbine noise modeling based on Amiet's theory: Effects of wind shear and atmospheric turbulence, Acta Acustica united with acustica, Vol. 102, pp. 626-639. https://doi.org/10.3813/AAA.918979
  18. Wang, M., J. B. Freund, and S. K. Lele(2006), Computational Prediction of Flow-Generated Sound, Annual Review of Fluid Mechanics, Vol. 38, pp. 483-512. https://doi.org/10.1146/annurev.fluid.38.050304.092036
  19. Williams J. E. F. and L. H. Hall(1970), Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane, Journal of Fluid Mechanics, Vol. 40, No. 4, pp. 657-670. https://doi.org/10.1017/S0022112070000368