DOI QR코드

DOI QR Code

Low-cycle Fatigue Behaviors of the Steel Pipe Tee of a Nuclear Power Plant Using Image Signals

이미지 신호를 이용한 원자력발전소 강재배관 Tee의 저주기 피로 거동

  • 김성완 (부산대학교 지진방재연구센터) ;
  • 전법규 (부산대학교 지진방재연구센터) ;
  • 정진환 (부산대학교 건설융합학부) ;
  • 김성도 (경성대학교 토목공학과)
  • Received : 2019.08.12
  • Accepted : 2019.09.05
  • Published : 2019.11.01

Abstract

Upon installing a seismic isolation device on a nuclear power plant, the device takes on the suppression of seismic loads. This is expected to bring about a larger displacement than what is seen prior to the installation of the seismic isolation device. Depending on the displacement change, the seismic risk for some equipment can increase. Particularly in case of the piping system, which is used for connecting the structure isolated from seismic events with common structures, the seismic risk is expected to rise significantly. In this study, the limit state of the steel pipe tee, which is a vulnerability part of the nuclear power plant piping system, was defined as leakage, and an in-plane cyclic loading test was conducted. As it is difficult to measure the moment and rotation of the steel pipe tee using the conventional sensors, an image signal was used. This study proposed a leakage line and low-cycle fatigue curves using the relationship between the moment and the rotation of a 3-inch steel pipe tee.

원자력발전소에 지진격리장치를 설치하면 지진에 의한 하중을 지진격리장치가 담당하면서 설치 전보다 큰 변위가 발생하게 될 것으로 예상되며, 변위증가에 따라 일부 설비의 지진리스크가 증가될 가능성이 있다. 특히 지진격리된 구조물과 일반 구조물을 연결하는 설비인 배관 시스템의 경우 지진리스크가 크게 증가될 것으로 예상된다. 본 연구에서는 원자력발전소 배관 시스템의 취약부위인 강재 배관 Tee의 한계상태를 누수로 정의하고 면내반복가력시험을 수행하였다. 강재 배관 Tee의 모멘트와 변형각은 기존의 센서를 이용한 계측이 어려우므로 이미지 신호를 이용하여 측정하였다. 본 연구에서는 3인치 강재 배관 Tee의 모멘트와 변형각의 관계를 이용한 누수 선도 및 저주기 피로 곡선들을 제시하였다.

Keywords

References

  1. Bruk, H.A., McNeil, S.R., Sutton, M.A., Perter, W.H., (1989), Digital image correlation using Newton-Raphson method of partial differential correlation, Experimental Mechanics, 29, 261-267. https://doi.org/10.1007/BF02321405
  2. EPRI, Piping and fitting dynamic reliability program, (1994), EPRI TR-102792-V1 through V5.
  3. Firoozabad, E.S., Jeon, B.G., Choi, H.S., Kim, N.S., (2015), Seismic fragility analysis of seismically isolated nuclear power plants piping system, Nuclear Engineering and Design, 284, 264-279. https://doi.org/10.1016/j.nucengdes.2014.12.012
  4. Hassan, T., Rahman, M., Bari, S., (2015), Low-cycle fatigue and ratcheting responses of elbow piping components, Journal of Pressure Vessel Technology, 137, 031010. https://doi.org/10.1115/1.4029068
  5. Hild, F., Roux, S., (2012), Comparison of local and global approaches to digital image correlation, Experimental Mechanics, 52, 1503-1519. https://doi.org/10.1007/s11340-012-9603-7
  6. Jeon, B.G., Kim, S.W., Choi, H.S., Park, D.U., Kim, N.S., (2017), A Failure estimation method of steel pipe elbows under in-plane cyclic loading, Nuclear Engineering and Technology, 49, 245-253. https://doi.org/10.1016/j.net.2016.07.006
  7. Kim, S.W., Choi, H.S., Jeon, B.G., Hahm, D.G., (2019), Low-cycle fatigue behaviors of the elbow in a nuclear power plant piping system using the moment and deformation angle, Engineering Failure Analysis, 96, 348-361. https://doi.org/10.1016/j.engfailanal.2018.10.021
  8. Pan, B., Qian, K., Xie, H., Asundi, A., (2009), Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science and Technology, 20(6), 1-17.
  9. Soroushian, S., Zaghi, A.E., Maragakis, E., "Manos" Echevarria, A., Tian, Y., Filiatrault, A., (2015), Seismic fragility study of fire sprinkler piping systems with grooved fit joints, Journal of Structural Engineering, 141(6), 04014157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001122
  10. Takahashi, K., Ando, K., Matsuo, K., Urabe, Y., (2014), Estimation of low-cycle fatigue life of elbow pipes considering the multi-axial stress effect, Journal of Pressure Vessel Technology, 136(4), 041405. https://doi.org/10.1115/1.4026903
  11. Takahashi, K., Watanabe, S., Ando, K., Hidaka, A., Hisatsune, M., Miyazaki, K., (2009), Low cycle fatigue behaviors of elbow pipe with local wall thinning, Nuclear Engineering and Design, 239(12), 2719-2727. https://doi.org/10.1016/j.nucengdes.2009.09.011
  12. Urabe, Y., Takahashi, K., Sato, K., Ando, K., (2013), Low cycle fatigue behavior and seismic assessment for pipe bend having local wall thinning-influence of internal pressure, Journal of Pressure Vessel Technology, 135(4), 041802. https://doi.org/10.1115/1.4024444
  13. Varelis, G.E., Karamanos, S.A., (2015), Low-cycle fatigue of pressurized steel elbows under in-plane bending, Journal of Pressure Vessel Technology, 137(1), 011401. https://doi.org/10.1115/1.4027316
  14. Vishnuvardhan, S., Raghava, G., Gandhi, P., Saravanan, M., Pukazhendhi, D., Goyal, S., Arora, P., Gupta, S.K., (2010), Fatigue ratcheting studies on TP304 LN stainless steel straight pipes, Procedia Engineering, 2(1), 2209-2218. https://doi.org/10.1016/j.proeng.2010.03.237
  15. Vishnuvardhan, S., Raghava, G., Ganhdi, P., Saravanan, M., Goyal, S., Arora, P., Gupta, S. K., Bhasin, V., (2013), Ratcheting failure of pressurized pipes and elbows under reversed bending, International Journal of Pressure Vessels and Piping, 105-106, 79-89. https://doi.org/10.1016/j.ijpvp.2013.03.005
  16. Wang, T., Shang, Q., Chen, X., Li, J., (2019), Experiments and fragility analyses of piping systems connected by grooved fit joints with large deformability, Frontiers in Built Environment, 5, 49. https://doi.org/10.3389/fbuil.2019.00049