DOI QR코드

DOI QR Code

The Differences of Graph Construction of Middle School Students on Daily-life and Scientific Contexts by the Views on the Nature of Scientific Measurement

중학생의 측정의 본성에 대한 견해에 따른 일상 및 과학적 맥락에서의 그래프 구성의 차이

  • Lee, Jaewon (Department of Chemistry Education, Seoul National University) ;
  • Ryu, Goeun (Department of Chemistry Education, Seoul National University) ;
  • Lee, Kyuyul (Department of Chemistry Education, Seoul National University) ;
  • Noh, Taehee (Department of Chemistry Education, Seoul National University)
  • 이재원 (서울대학교 화학교육과) ;
  • 류고운 (서울대학교 화학교육과) ;
  • 이규열 (서울대학교 화학교육과) ;
  • 노태희 (서울대학교 화학교육과)
  • Received : 2019.07.20
  • Accepted : 2019.09.14
  • Published : 2019.12.20

Abstract

In this study, we investigated the differences of graph constructed by middle school students in daily-life and scientific contexts according to the views on the nature of scientific measurement. A test consisting of three similar data sets regarding daily-life and scientific contexts was developed, and administered to 151 ninth graders. They were expected to construct proportional, inverse-proportional, and increasing and become constant form of graphs for each data set. Graphs constructed were analyzed in the aspects of constructing a trend line (types of a trend line, interpolation/extrapolation), selecting axes variables, scaling axes, and plotting points. Analyses of the results revealed that the students with set paradigm tended to construct a curved trend line, while those with point paradigm constructed a broken trend line in inverse-proportional graph questions. In the aspects of interpolation/extrapolation, most students with set paradigm performed both interpolation and extrapolation better than those with point paradigm in scientific context. Most students with set paradigm performed both interpolation and extrapolation regardless of contexts, while the proportion of interpolation of those with point paradigm was higher in scientific context than in daily-life context. In selecting axes variables, scaling axes, and plotting dots, there were no statistically significant differences between set and point paradigms. On the bases of the results, educational implications for improving graph construction skills of middle school students are discussed.

이 연구에서는 측정의 본성에 대한 견해에 따라 중학생이 구성한 일상 및 과학적 맥락의 그래프에서 나타나는 차이를 조사하였다. 중학교 3학년 학생 151명이 연구에 참여하였다. 일상 및 과학적 맥락만 다른 상황에서 비례, 반비례, 비례하게 증가하다 일정해지는 형태의 그래프를 구성할 수 있도록 유사한 측정값을 갖는 자료를 각각 제시한 후, 학생들이 구성한 그래프를 추세선 구성(추세선의 유형, 내·외삽), 축 변수 설정, 축 눈금 표기와 점 찍기 측면에서 분석하였다. 연구 결과, 집합 패러다임의 학생들은 반비례 그래프의 추세선을 곡선형으로, 점 패러다임의 학생들은 꺾은선형으로 구성하는 경향이 있었다. 내·외삽의 경우, 과학적 맥락의 그래프에서 집합 패러다임의 학생들은 점 패러다임의 학생들보다 내·외삽을 더 잘 수행하는 경향이 있었다. 이때 집합 패러다임의 학생들은 일상 및 과학적 맥락과 무관하게 내·외삽을 잘 수행하였으나 점 패러다임의 학생들은 일상적 맥락보다 과학적 맥락에서 내삽만 수행한 비율이 높았다. 축 변수 설정, 축 눈금 표기, 점 찍기 요소는 패러다임 유형에 따른 통계적으로 유의미한 차이가 없었다. 연구 결과를 바탕으로 중학생의 그래프 구성 능력 함양을 위한 교육적 시사점을 논의하였다.

Keywords

References

  1. Lee, J.; Lee, K. Journal of the Korean Association for Science Education 2007, 27, 285.
  2. Aberg-Bengtsson, L.; Ottosson, T. Journal of Research in Science Teaching 2006, 43, 43. https://doi.org/10.1002/tea.20087
  3. Shah, P.; Hoeffner, J. Educational Psychology Review 2002, 14, 47. https://doi.org/10.1023/A:1013180410169
  4. Bowen, G. M.; Roth, W. M. Journal of Research in Science Teaching 2005, 42, 1063. https://doi.org/10.1002/tea.20086
  5. Kim, T. S.; Ko, S.-K.; Kim, B.-K. Journal of the Korean Association for Science Education 2005, 25, 624.
  6. Lee, B.; Park, B.; Kim, H. Journal of the Korean Association for Science Education 2007, 27, 421.
  7. Klein, P. D. The Journal of Experimental Education 1998, 66, 101. https://doi.org/10.1080/00220979809601398
  8. Lee, J.; Lee, S. M. Journal of the Korean Association for Science Education 2006, 26, 581.
  9. Lubben, F.; Campbell, B.; Buffler, A.; Allie, S. Science Education 2001, 85, 311. https://doi.org/10.1002/sce.1012
  10. Lippmann, R. F. Students' Understanding of Measurement and Uncertainty in the Physics Laboratory: Social Construction, Underlying Concepts, and Quantitative Analysis; Doctoral Dissertation, University of Maryland, 2003.
  11. Yang, C.; Lee, J.; Kim, Y.; Noh, T. Journal of Korean Elementary Science Education 2011, 30, 430. https://doi.org/10.15267/KESES.2011.30.4.430
  12. Rosenbaum, P. R. Observation and Experiment; Harvard University Press: 2017.
  13. Mossner, N.; Nordmann, A. Reasoning in Measurement; Taylor & Francis: 2017.
  14. Buffler, A.; Allie, S.; Lubben, F. International Journal of Science Education 2001, 23, 1137. https://doi.org/10.1080/09500690110039567
  15. Buffler, A.; Lubben, F.; Ibrahim, B. International Journal of Science Education 2009, 31, 1137. https://doi.org/10.1080/09500690802189807
  16. Munier, V.; Merle, H.; Brehelin, D. International Journal of Science Education 2013, 35, 2752. https://doi.org/10.1080/09500693.2011.640360
  17. Lee, E. M.; Kim, B.-K. Journal of the Korean Association for Science Education 2012, 32, 293. https://doi.org/10.14697/jkase.2012.32.2.293
  18. Rollnick, M.; Lubben, F.; Lotz, S.; Dlamini, B. Research in Science Education 2002, 32, 1. https://doi.org/10.1023/A:1015022804590
  19. Kim, Y.; Choi, G.; Noh, T. Journal of the Korean Association for Science Education 2009, 29, 978.
  20. Gultepe, N. Educational Sciences: Theory & Practice 2016, 16, 53.
  21. Kim, T. S.; Bae, D. J.; Kim, B.-K. Journal of the Korean Association for Science Education 2002, 22, 725.
  22. Lim, H.-M.; Kim, Y.-H.; Kim, Y.-S. Biology Education 2010, 38, 342. https://doi.org/10.15717/bioedu.2010.38.2.342
  23. Beichner, R. J. American Journal of Physics 1994, 62, 750. https://doi.org/10.1119/1.17449
  24. Kim, Y.; Moon, S.; Kang, H.; Noh, T. Journal of the Korean Association for Science Education 2009, 29, 168.
  25. Lapp, D. A.; Cyrus, V. F. Mathematics Teacher 2000, 93, 504. https://doi.org/10.5951/MT.93.6.0504
  26. Roth, W.-M.; Bowen, G. M. Cognition and Instruction 2003, 21, 429. https://doi.org/10.1207/s1532690xci2104_3
  27. Berg, C. A.; Smith, P. Science Education 1994, 78, 527. https://doi.org/10.1002/sce.3730780602
  28. Kim, T. S. Journal of the Korean Association for Science Education 2006, 26, 49.
  29. Ploetzner, R.; Lippitsch, S.; Galmbacher, M.; Heuer, D.; Scherrer, S. Computers in Human Behavior 2009, 25, 56. https://doi.org/10.1016/j.chb.2008.06.006
  30. Yang, S. J.; Jang, M. D. Journal of Korean Elementary Science Education 2012, 31, 321. https://doi.org/10.15267/KESES.2012.31.3.321
  31. Ibrahim, B. B. The Relationship Between Views of the Nature of Science and Views of the Nature of Scientific Measurement. Master's Thesis, University of Cape Town, 2005.
  32. Korea Institute of Curriculum & Evaluation. Characteristics of Korean Middle School Students as Mathematics Learners; Korea Institute of Curriculum & Evaluation, 2011.
  33. Mckenzie, D. L.; Padilla, M. J. Journal of Research in Science Teaching 1986, 23, 571. https://doi.org/10.1002/tea.3660230702
  34. Pak, S.-I.; Lee, Y.-W. Journal of Veterinary Clinics 2009, 26, 401.
  35. Abdi, H. Encyclopedia of Measurement and Statistics 2007, 3, 103.
  36. Lederman, N. G.; Adb-El-Khalick, F.; Bell, R. L.; Schwartz, R. S. Journal of Research in Science Teaching 2002, 39, 497. https://doi.org/10.1002/tea.10034
  37. Delgado, C.; Lucero, M. M. Journal of Research in Science Teaching 2015, 52, 633. https://doi.org/10.1002/tea.21205