DOI QR코드

DOI QR Code

국내 대학병원에서 분리된 Metallo-β-Lactamase (MBL) 생성 Acinetobacter spp. 분리주의 높은 출현율과 유전형 특징

High Prevalence and Genotypic Characterization of Metallo-β-Lactamase (MBL)-Producing Acinetobacter spp. Isolates Disseminated in a Korean Hospital

  • Yum, Jong Hwa (Department of Clinical Laboratory Science, Dongeui University)
  • 투고 : 2019.09.22
  • 심사 : 2019.10.08
  • 발행 : 2019.12.31

초록

주요 획득성 metallo-β-lactamase (MBL) 유전자에 의해 매개되는 carbapenem 내성, 특히 Acinetobacter spp. 균종의 임상 분리주에 대한 보고가 증가하고 있다. 본 연구에서 임상에서 비 중복으로 분리된 carbapenem 비감수성 Acinetobacter spp. 191주 중 125 (65.4%)주가 imipenem 혹은 meropenem-Hodge 변법시험에 양성이었고, 49 (25.7%)주가 imipenem-EDTA+SMA double disk synergy (DDS) 시험에 양성이었다. blaVIM-2 allele와 blaIMP-2 allele 검출을 위한 중합효소연쇄반응과 염기서열분석을 시행한 결과, A. baumannii와 A. calcoaceticus에서 각각 29주와 1주가 blaVIM-2를 갖고 있었고, A. baumannii 16주와 A. calcoaceticus 2주가 blaIMP-1을 갖고 있었다. A. genomospecies 3는 blaVIM-2와 blaAIM-1을 동시에 갖고 있었다. 이들 MBL 유전자는 모두 class 1 integron에 있었다. blaVIM-2 혹은 blaIMP-6를 갖는 class 1 integron의 크기는 A. baumannii 분리주에서는 2.8 kb에서 3.2 kb이었고, A. genomospecies 3 분리주에서는 3.2 kb에서 3.5 kb이었다. blaVIM-2는 대부분 class 1 integron에 첫번째 혹은 두번째에 위치하였고, aacA4를 흔히 가지고 있었다. 다양한 내성 유전자를 가질 수 있는 MBL 생성 Acinetobacter spp.뿐 아니라 다양한 내성 유전자를 가질 수 있는 integron의 전파로 imipenem이나 meropenem과 같은 carbapenem 내성을 포함하여 다제 내성 그람음성 세균의 증가가 예상된다. 또한, 위중한 Acinetobacter spp. 감염증 치료를 위한 새로운 항균제 개발이 필요하다.

Carbapenem resistance, mediated by the major acquired metallo-β-lactamase (MBL) genes, has been increasingly reported, particularly for clinical isolates of Acinetobacter spp. Of the 191 nonduplicate clinical isolates of the carbapenem-nonsusceptible Acinetobacter spp. evaluated, 125 isolates (65.4%) were positive for the modified imipenem or meropenem-Hodge test, and 49 isolates (25.7%) were positive for the imipenem-EDTA+SMA double disk synergy test (DDS). PCR and sequencing of the blaVIM-2-allele and blaIMP-1-allele showed that 29 A. baumannii isolates and 1 A. calcoaceticus isolate had blaVIM-2, whereas 16 A. baumannii isolates and 2 A. calcoaceticus isolates had blaIMP-6; 1 isolate of the A. genomospecies 3 had blaVIM-2 and blaAIM-1. All the above MBL genes belong to class 1 integron. The size of class 1 integron encompassing blaVIM-2 or blaIMP-6 ranges from 2.8 kb to 3.2 kb in clinical isolates of A. baumannii, and 3.2 kb to 3.5 kb in clinical isolates of A. genomospecies 3. blaVIM-2 was most often located first or second in the class 1 integron, and these integrons often included aacA4. Due to dispersion of the MBL-producing Acinetobacter spp. as well as integron, which may encompass various resistance genes, there is an expectation for the increase of multidrug resistant Gram-negative bacteria, including resistance of carbapenems such as imipenem or meropenem. Hence, the development of new antimicrobial agents for treating severe Acinetobacter spp. infections is needed.

키워드

참고문헌

  1. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130. https://doi.org/10.1186/1471-2334-6-130.
  2. Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis. 2010;51;79-84. http://doi.org/10.1086/653120.
  3. Jose G-M, Rosario A-V. Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr Opin Infect Dis. 2010;23:332-339. https://doi.org/10.1097/QCO.0b013e32833ae38b.
  4. Visca P, Seifert H, Towner KJ. Acinetobacter infection-an emerging threat to human health. IUBMB Life. 2011;63:1048-1054. https://doi.org/10.1002/iub.534.
  5. Chusri S, Chongsuvivatwong V, Rivera JI, Silpapojakul K, Singkhamanan K, McNeil E, et al. Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob. Agents Chemother. 2014;58:4172-4179. https://doi.org/10.1128/AAC.02992-14.
  6. Wisplinghoff H, Paulus T, Lugenheim M, Stefanik D, Higgins PG, Edmond MB, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect. 2012;64:282-290. https://doi.org/10.1016/j.jinf.2011.12.008.
  7. Singh H, Thangaraj P, Chakrabarti. A. Acinetobacter baumannii: a brief account of mechanisms of multidrug resistance and current and future therapeutic management. J Clin Diagn Res. 2013;7:2602-2605. https://doi.org/10.7860/JCDR/2013/6337.3626.
  8. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42-51. https://doi.org/10.1038/nrmicro3380.
  9. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-${\beta}$-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005;49:4485-4491. https://doi.org/10.1128/AAC.49.11.4485-4491.2005.
  10. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005.
  11. Yong D, Toleman MA, Bell J, Ritchie B, Pratt R, Ryley H, et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-${\beta}$-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother. 2012;56:6154-6159. https://doi.org/10.1128/AAC.05654-11.
  12. Livermore DM, Woodford N. Carbapenemases: a problem in waiting? Curr Opin Microbiol. 2000;3:489-495. https://doi.org/10.1016/S1369-5274(00)00128-4
  13. Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, et al. Molecular characterization of SPM-1, a novel metallo-${\beta}$-lactamase isolated in Latin America: report from the SENTRY antimicrobial programme. J Antimicrob Chemother. 2002;50:673-679. https://doi.org/10.1093/jac/dkf210.
  14. Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-${\beta}$-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 2000;44:891-897. https://doi.org/10.1128/aac.44.4.891-897.2000.
  15. Watanabe JJ, Ko WC, Wu JJ. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1991;45:1343-1348. https://doi.org/10.1128/AAC.45.5.1343-1348.2001
  16. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y, et al. VIM and IMP-type metallo-${\beta}$-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003;9:868-871. https://doi.org/10.3201/eid0907.020753.
  17. Sung JY, Koo SH, Kim S, Kwon GC. Emergence of Acinetobacter pittii harboring New Delhi metallo-beta-lactamase genes in Daejeon, Korea. Ann Lab Med. 2015;35:531-534. https://doi.org/10.3343/alm.2015.35.5.531.
  18. Loffler FE, Sun Q, Li J, Tiedje JM. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol. 2000;66:1369-1374. https://doi.org/10.1128/aem.66.4.1369-1374.2000.
  19. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge test and EDTA-disk synergy tests to screen metallo-${\beta}$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001;7:88-91. https://doi.org/10.1046/j.1469-0691.2001.00204.x
  20. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge Test and the imipenem-EDTA double disk synergy test for differentiating metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003;41:4623-4629. https://doi.org/10.1128/jcm.41.10.4623-4629.2003.
  21. Riccio ML, Franceschini N, Boschi L, Caravelli B, Cornaglia G, Fontana R, et al. Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother. 2000;44:1229-1235. https://doi.org/10.1128/aac.44.5.1229-1235.2000.
  22. Levesque C, Piche L, Chantal L, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995;39:185-191. https://doi.org/10.1128/aac.39.1.185.
  23. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-${\beta}$-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;43:458-461. https://doi.org/10.1128/jcm.41.12.5407-5413.2003.
  24. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility tests; approved standards M2-A8, 27th ed. Wayne PA: CLSI; 2017.
  25. Lee K, Kim CK, Yong D, Jeong SH, Yum JH, Seo YH. et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods. 2010;83:149-152. https://doi.org/10.1016/j.mimet.2010.08.010.
  26. Arakawa Y, Shibata N, Shibayams K, Kurokawa H, Yagi T, Fugiwara H, et al. Convenient test for screening metallo-betalactamase producing gram negative bacteria by using thiol compounds. J Clin Microbiol. 2000;38:40-43. https://doi.org/10.1128/JCM.38.1.40-43.2000
  27. Lai CC, Chen YS, Lee NY, Tang HJ, Lee SS, Lin CF, et al. Susceptibility rates of clinically important bacteria collected from intensive care units against colistin, carbapenems, and other comparative agents: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infect Drug Resist. 2019;12:627-640. https://doi.org/10.2147/IDR.S194482.
  28. Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, et al. Molecular characterization of metallo-${\beta}$-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the $bla_{VIM-2}$ gene cassettes. J Antimicrob Chemother. 2002;49:837-840. https://doi.org/10.1093/jac/dkf043.
  29. Yong D, Choi YS, Roh KH, Kim CK, Park YH, Yum JH, et al. Increasing prevalence and diversity of metallo-${\beta}$-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob Agents Chemother. 2006;50:1884-1886. https://doi.org/10.1128/AAC.50.5.1884-1886.2006.
  30. Fiett J, Baraniak A, Mrowka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, et al. Molecular epidemiology of acquired-metallo-${\beta}$-lactamase-producing bacteria in Poland. Antimicrob. Agents Chemother. 2006;50:880-886. https://doi.org/10.1128/AAC.50.3.880-886.2006.
  31. Toleman MA, Biedenbach D, Bennett DM, Jones RN, Walsh TR. Italian metallo-beta-lactamases: a national problem? report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother. 2005;55:61-70. https://doi.org/10.1093/jac/dkh512.
  32. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-${\beta}$-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43:1584-1590. https://doi.org/10.1128/AAC.43.7.1584
  33. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, et al. blaVIM-2 cassette-containing novel integrons in metallo-${\beta}$-lactamaseproducing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in ad Korean hospital. Antimicrob Agents Chemother. 2002;46:1053-1058. https://doi.org/10.1128/aac.46.4.1053-1058.2002.
  34. Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-encoded metallo-${\beta}$-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob. Agents Chemother. 2001;45:1343-1348. https://doi.org/10.1128/AAC.45.5.1343-1348.2001.
  35. Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-${\beta}$-lactamses-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother. 2011;66:2791-2796. https://doi.org/10.1093/jac/dkr381.
  36. Quinteira S, Souse JC, Peixe L. Characterization of In100, a New integron carrying a metallo-beta-lactamase and a carbenicillinase, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005;49:451-453. https://doi.org/10.1128/AAC.49.1.451-453.2005.
  37. Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First Nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-${\beta}$-lactamase (VIM-2) in the United States. Antimicrob. Agents Chemother. 2005;49:3538-3540. https://doi.org/10.1128/AAC.49.8.3538-3540.2005.
  38. Kim I-S, Lee NY, Ki C-S, Oh WS, Peck KR, Song J-H. Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and molecular typing of metallo-${\beta}$-lactamase producers in a Korean Hospital. Microb. Drug Resistance. 2005;11:355-3558. https://doi.org/10.1089/mdr.2005.11.355.
  39. Pitout JD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. Molecular epidemiology of metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa in the Calgary health region: emergence of VIM-2-producing isolates. J Clin Microbiol. 2007;43:458-61. https://doi.org/10.1128/JCM.01694-06.