References
- Asner, G.P., Bustamante, M.M. and Townsend, A.R. 2003. Scale dependence of biophysical structure in deforested areas bordering the Tapaos National Forest, Central Amazon. Remote Sensing of Environment 87: 507-520. https://doi.org/10.1016/j.rse.2003.03.001
- Cho, H.G. and Lee, K.S. 2014. Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species. Korean Journal of Remote Sensing 30: 25-36. (in Korean) https://doi.org/10.7780/kjrs.2014.30.1.3
- Gao, B.C., Montes. M.J. and Davis, C.O. 2004. Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum matching technique, Remote Sensing of Environment 90: 424-433. https://doi.org/10.1016/j.rse.2003.09.002
- Goetz, A.F.H. 2009. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment 113: S5-S16. https://doi.org/10.1016/j.rse.2007.12.014
- Han, D.Y., Cho, Y.W., Kim, Y.I. and Lee, Y.W. 2003. Feature selection for image clasiification of hyperion data. Korean Journal of Remote Sensing 19: 171-179. (in Korean)
- Herold, M., Roberts, D.A., Gardner, M.E. and Dennison, P.E. 2004. Spectrometry for urban area remote sensing Development and analysis of a spectral library from 350 to 2400 nm. Remote Sensing of Environment 91: 304-319. https://doi.org/10.1016/j.rse.2004.02.013
- Jang, A.J., Kim, Y.I., Choi, S.K., Han, D.Y., Choi, J.W., Kim, Y.M., Han, Y.K., Park, H.L., Wang, P. and Lim, H.C. 2013. Construction and data analysis of test-bed by hyperspectral airborne remote sensing. Korean Journal of Remote Sensing 29: 161-172. (in Korean) https://doi.org/10.7780/kjrs.2013.29.2.1
- Kang, J.G., Lee, C.H., Yeo, H.K. and Kim, J.T. 2019. Correlation analysis on the water depth and peak data value of hyperspectral imagery. Ecology and Resilient Infrastructure 6: 171-177. (in Korean) https://doi.org/10.17820/eri.2019.6.3.171
- Kim, Y.J., Han, H.J. and Kang, J.G. 2018. The study on spatial classification of riverine environment using UAV hyperspectral image. Journal of the Korea Academia-Industrial cooperation Society 19: 633-639. (in Korean)
- Kokaly, R.F., Asner, G.P., Ollinger, S.V., Martin, M.E. and Wessman, C.A. 2009. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment 113: S78-S91. https://doi.org/10.1016/j.rse.2008.10.018
- Koponen, S., Pulliainen, J. Kallio, K. and Hallikainen. M. 2002. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sensing of Environment 79: 51-59. https://doi.org/10.1016/S0034-4257(01)00238-3
- Lee, J.D., Bang, K.J. and Kim, H.H. 2018. Land cover classification of coastal area by SAM from airborne hyperspectral images. Journal of the Korean Association of Geographic Information Studies 21: 35-45. (in Korean)
- Long, Y., Rivard, B., Rogge, D. and Tian, M. 2019. Hyperspectral band selection using the N-dimensional Spectral Solid Angle method for the improved discrimination of spectrally similar targets. International Journal of Applied Earth Observation and Geoinformation 79: 35-47. https://doi.org/10.1016/j.jag.2019.03.002
- Myers, T.L., Johnson, T.J., Gallagher, N.B., Bernacki, B.E., Beiswenger, T.N., Szecsody, J.E., Tonkyn, R.G., Bradley, A.M., Su, Y.F. and Danby, T.O. 2019. Hyperspectral imaging of minerals in the longwave infrared: The use of laboratory directional-hemispherical reference measurements for field exploration data. Journal of Applied Remote Sensing 13: 034527
- Park, Y.J., Jang, H.J., Kim, Y.S., Baik, K.H. and Lee, H.S. 2014. A Research on the Applicability of Water Quality Analysis using the Hyperspectral Sensor. Journal of the Korean Society for Environmental Analysis 17: 113-125. (in Korean)
- Pignatti, S., Cavalli, R.M., Cuomo, V., Fusilli, L., Pascucci, S. and Poscolieri, M. 2009. Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy. Remote Sensing of Environment 113: 622-634. https://doi.org/10.1016/j.rse.2008.11.006
- Smith, M., Ollinger, S.V., Martin, M.E., Aber, J.D., Hallett, R.A. and Goodale, G.L. 2002. Direct estimation of aboveground forest prodectivity through hyperspectral remote sensing of canopy nitrogen. Ecological Applications 12: 1286-1302. https://doi.org/10.1890/1051-0761(2002)012[1286:DEOAFP]2.0.CO;2
- Song, K., Li, L., Tedesco, L.P., Li, S., Clercin, N.A., Hall, B.E., Li, Z. and Shi, K. 2012. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Science of the Total Environment 426: 220-232. https://doi.org/10.1016/j.scitotenv.2012.03.058
- Stratoulias, D., Balzter, H., Zlinszky, A. and Toth, V.R. 2015. Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. Remote Sensing of Environment 157: 72-84. https://doi.org/10.1016/j.rse.2014.05.021
- Yu, Y.H., Kim, Y.S. and Lee, S.G. 2008. A study on estimation of water depth using hyperspectral satellite imagery. Koera Aerospace Research Institute 7: 216-222. (in Korean)