References
- Baysal, G., Onder, S., Gocek, I., Trabzon, L., Kizil, H., Kok, F. N., & Kayaoglu, B. K. (2014). Microfluidic device on a nonwoven fabric: A potential biosensor for lactate detection. Textile Research Journal, 84(16), 1729-1741. doi:10.1177/0040517514528565
- Bernanose, A. (1955). The mechanism of organic electroluminescence. Journal of Chemical Physics, 52, 396-400.
- Blucher, J. T., Narusawa, U., Katsumata, M., & Nemeth, A. (2001). Continuous manufacturing of fiber-reinforced metal matrix composite wires? Technology and product characteristics. Composites Part A: Applied Science and Manufacturing, 32(12), 1759-1766. doi:10.1016/S1359-835X(01)00024-0
- Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: A review. Smart Materials and Structures, 23(5), 053001. doi:10.1088/0964-1726/23/5/053001
- Chang, C. L., Fix, K., & Wang, W. C. (2010). Reliability of PEDOT-PSS strain gauge on foam structure. Proceedings of the International Society for Optics and Photonics 2010 Spring Conference; San Diego, California, USA, pp. 7-11, March, Bellingham, WA, USA: SPIE. doi:10.1117/12.847701
- Cho, H. S., Jang, E. J., & Cho, G. S. (2019). Characteristics of PEDOT:PSS Impregnated Polyurethane Nanoweb with Post-Thermal-Treatment. Proceedings of the Fiber Society 2019 Annual Spring Conference, Tsim Sha Tsui, Hong Kong, China, pp. 21-23, May, Meade, MD, USA: Fiber Society.
- Corres, J. M., Garcia, Y. R., Arregui, F. J., & Matias, I. R. (2011). Optical fiber humidity sensors using PVdF electrospun nanowebs. IEEE Sensors Journal, 11(10), 2383-2387. doi:10.1109/JSEN.2011.2123881
- Coyle, S., Lau, L., Moyna, N., O'Gorman, D., Diamond, D., Francesco, F., Costanzo, D., Salvo, P., Trivella, M., De Rossi, D. M., Taccini, N., Paradiso, R., Porchet, J. A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Revol-Cavalier, F., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De-Moncuit, H., & Christina, B. (2010). BIOTEX-Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364-370. doi:10.1109/TITB.2009.2038484
- Griffiths, D. J., & Reeves, A. (1999). Electrodynamics. introduction to electrodynamics (3rd ed.). New Jersey: Prentice Hall.
- Ivetic, M., Mojovic, Z., & Matija, L. (2003). Electrical conductivity of fullerene derivatives. Materials Science Forum Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland. 413, 49-52. doi:10.4028/www.scientific.net/MSF.413.49
- Jang, E. J., & Cho, G. S. (2018). Development of PU nanoweb based electroconductive textiles and exploration of applicability as a transmission line for smart clothing. Fashion & Textile Research Journal, 20(1), 101-107. doi:10.5805/SFTI.2018.20.1.101
- Jang, E. J., Cho, H. S., & Cho, G. S. (2019a). Enhancing the conductivity of PEDOT:PSS/PU nanoweb via dimethyl sulfoxide solvent treatment. Proceedings of the Fiber Society 2019 Annual Spring Conference, Tsim Sha Tsui, Hong Kong, China, pp. 21-23, May, Meade, MD, USA: Fiber Society.
- Jang, E. J., Hang, L., & Cho, G. S. (2019b). Characterization and exploration of polyurethane nanofiber webs coated with graphene as a strain gauge. Textile Research Journal, 89(23-24), 4980-4991. doi:10.1177/0040517519844604
- Jeong, E. G., Jeon, Y., Cho, S. H., & Choi, K. C. (2019). Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy & Environmental Science, 12(6), 1878-1889. doi:10.1039/C8EE03271H
- Karpagam, K. R., Saranya, K. S., Gopinathan, J., & Bhattacharyya, A. (2017). Development of smart clothing for military applications using thermochromic colorants. The Journal of the Textile Institute, 108(7), 1122-1127. doi:10.1080/00405000.2016.1220818
- Kim, I. H., Lee, E. G., Jang, E. J., & Cho, G. S. (2018). Characteristics of polyurehtane nanowebs treated with silver nanowire solutions as strain sensors. Textile Research Journal, 88(11), 1215-1225. doi:10.1177/0040517517697647
- Kim, I. H., & Cho, G. S. (2018). Polyurethane nanofiber strain sensors via in-situ polymerization of polypyrrole and application to monitoring joint flexion. Smart Materials Structures, 27(7), 075006. doi:10.1088/1361-665X/aac0b2
- Kim, J., Campbell, A. S., de Ávila, B. E. F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology. 37, 389-406. doi:10.1038/s41587-019-0045-y
- Lee, E. G., & Cho, G. S. (2019). PU nanoweb-based textile electrode treated with single-walled carbon nanotube/silver nanowire and its application to ECG monitoring. Smart Materials Structures, 28(4), 045004. doi:10.1088/1361-665X/ab06e0
- Masuda, A., Murakami, T., Honda, K., & Yamaguchi, S. (2006). Optical properties of woven fabrics by plastic optical fiber. Journal of Textile Engineering, 52(3), 93-97. doi:10.4188//jte.52.93
- Mukai, K., Asaka, K., Wu, X., Morimoto, T., Okazaki, T., Saito, T., & Yumura, M. (2016). Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Applied Physics Express, 9(5), 055101. doi:10.7567/APEX.9.055101
- Pan, L. S., & Kania, D. R. (1994). Diamond: electronic properties and applications. Berlin: Springer.
- Pani, D., Achilli, A., Spanu, A., Bonfiglio, A., Gazzoni, M., & Botter, A. (2019). Validation of polymer-based screen-printed textile electrodes for surface EMG detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(7), 1370-1377 doi:10.1109/TNSRE.2019.2916397
- Park, S. H., Lee, H. B., Yeon, S. M., Park, J., & Lee, N. K. (2016). Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Applied Materials & Interfaces, 8(37), 24773-24781. doi:10.1021/acsami.6b07833
- Park, S. Y., Shin, M. K., Kim, H. J., Yeo, C. S., Cho, Y. J., & Cho, K. R. (2017). Method for manufacturing graphene oxide fiber, graphene fiber, and graphene or graphene (oxide) composite fiber by using elelctric field-induced wet spinning process. KO. Patent No. WO 2017/188564A1.
- Peters, K. (2010). Polymer optical fiber sensors -a review. Smart Materials and Structures, 20(1), 013002. doi:10.1088/0964-1726/20/1/013002
- Rothmaier, M., Luong, M., & Clemens, F. (2008a). Textile pressure sensor made of flexible plastic optical fibers. Sensors, 8(7), 4318-4329. doi:10.3390/s8074318
- Rothmaier, M., Selm, B., Spichtig, S., Haensse, D., & Wolf, M. (2008b). Photonic textiles for pulse oximetry. Optics Express, 16(17), 12973-12986. doi:10.1364/OE.16.012973
- Rubacha, M., & Zieba, J. (2007). Magnetic cellulose fibres and their application in textronics. Fibres & Textiles in Eastern Europe, 15(5), 64-65.
- Selm, B., Gurel, E. A., Rothmaier, M., Rossi, R. M., & Scherer, L. J. (2010). Polymeric optical fiber fabrics for illumination and sensorial applications in textiles. Journal of Intelligent Material Systems and Structures, 21(11), 1061-1071. doi:10.1177/1045389X10377676
- Serway, R. A., & Jewett, J. W. (1998). Principles of physics (Vol. 1). Fort Worth, TX: Saunders College Pub.
- Sinha, S. K., Noh, Y., Reljin, N., Treich, G. M., Hajeb-Mohammadalipour, S., Guo, Y., ... & Sotzing, G. A. (2017). Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Applied Materials & Interfaces, 9(43), 37524-37528. doi:10.1021/acsami.7b09954
- Sprogis, S. K., Currey, J., & Considine, J. (2019). Patient acceptability of wearable vital sign monitoring technologies in the acute care setting: a systematic review. Journal Clinicla Nursing, 28(15-16), 2732-2744. doi:10.1111/jocn.14893
- Takamatsu, S., Kobayashi, T., Shibayama, N., Miyake, K., & Itoh, T. (2011). Meter-scale surface capacitive type of touch sensors fabricated by weaving conductive-polymer-coated fibers. In 2011 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP). pp. 142-147. IEEE.
- Van Langenhove, L., & Hertleer, C. (2004). Smart clothing: a new life. International Journal of Clothing Science and Technology, 16(1/2), 63-72. doi:10.1108/09556220410520360
- Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X. M. (2014). Fiber based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310-5336. doi:10.1002/adma.201400633
- Zhong, Y., Zhang, F., Wang, M., Gardner, C. J., Kim, G., Liu, Y., ... & Chen, R. (2017). Reversible humidity sensitive clothing for personal thermoregulation. Scientific Reports, 7, 44208. doi:10.1038/srep44208