DOI QR코드

DOI QR Code

The Classification and Investigation of Smart Textile Sensors for Wearable Vital Signs Monitoring

웨어러블 생체신호 모니터링을 위한 스마트텍스타일센서의 분류 및 고찰

  • Jang, Eunji (Dept. of Clothing & Textiles, Yonsei University) ;
  • Cho, Gilsoo (Dept. of Clothing & Textiles, Yonsei University)
  • 장은지 (연세대학교 의류환경학과) ;
  • 조길수 (연세대학교 의류환경학과)
  • Received : 2019.09.20
  • Accepted : 2019.10.24
  • Published : 2019.12.31

Abstract

This review paper deals with materials, classification, and a current article investigation on smart textile sensors for wearable vital signs monitoring (WVSM). Smart textile sensors can lose electrical conductivity during vital signs monitoring when applying them to clothing. Because they should have to endure severe conditions (bending, folding, and distortion) when wearing. Imparting electrical conductivity for application is a critical consideration when manufacturing smart textile sensors. Smart textile sensors fabricate by utilizing electro-conductive materials such as metals, allotrope of carbon, and intrinsically conductive polymers (ICPs). It classifies as performance level, fabric structure, intrinsic/extrinsic modification, and sensing mechanism. The classification of smart textile sensors by sensing mechanism includes pressure/force sensors, strain sensors, electrodes, optical sensors, biosensors, and temperature/humidity sensors. In the previous study, pressure/force sensors perform well despite the small capacitance changes of 1-2 pF. Strain sensors work reliably at 1 ㏀/cm or lower. Electrodes require an electrical resistance of less than 10 Ω/cm. Optical sensors using plastic optical fibers (POF) coupled with light sources need light in-coupling efficiency values that are over 40%. Biosensors can quantify by wicking rate and/or colorimetry as the reactivity between the bioreceptor and transducer. Temperature/humidity sensors require actuating triggers that show the flap opening of shape memory polymer or with a color-changing time of thermochromic pigment lower than 17 seconds.

Keywords

References

  1. Baysal, G., Onder, S., Gocek, I., Trabzon, L., Kizil, H., Kok, F. N., & Kayaoglu, B. K. (2014). Microfluidic device on a nonwoven fabric: A potential biosensor for lactate detection. Textile Research Journal, 84(16), 1729-1741. doi:10.1177/0040517514528565
  2. Bernanose, A. (1955). The mechanism of organic electroluminescence. Journal of Chemical Physics, 52, 396-400.
  3. Blucher, J. T., Narusawa, U., Katsumata, M., & Nemeth, A. (2001). Continuous manufacturing of fiber-reinforced metal matrix composite wires? Technology and product characteristics. Composites Part A: Applied Science and Manufacturing, 32(12), 1759-1766. doi:10.1016/S1359-835X(01)00024-0
  4. Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: A review. Smart Materials and Structures, 23(5), 053001. doi:10.1088/0964-1726/23/5/053001
  5. Chang, C. L., Fix, K., & Wang, W. C. (2010). Reliability of PEDOT-PSS strain gauge on foam structure. Proceedings of the International Society for Optics and Photonics 2010 Spring Conference; San Diego, California, USA, pp. 7-11, March, Bellingham, WA, USA: SPIE. doi:10.1117/12.847701
  6. Cho, H. S., Jang, E. J., & Cho, G. S. (2019). Characteristics of PEDOT:PSS Impregnated Polyurethane Nanoweb with Post-Thermal-Treatment. Proceedings of the Fiber Society 2019 Annual Spring Conference, Tsim Sha Tsui, Hong Kong, China, pp. 21-23, May, Meade, MD, USA: Fiber Society.
  7. Corres, J. M., Garcia, Y. R., Arregui, F. J., & Matias, I. R. (2011). Optical fiber humidity sensors using PVdF electrospun nanowebs. IEEE Sensors Journal, 11(10), 2383-2387. doi:10.1109/JSEN.2011.2123881
  8. Coyle, S., Lau, L., Moyna, N., O'Gorman, D., Diamond, D., Francesco, F., Costanzo, D., Salvo, P., Trivella, M., De Rossi, D. M., Taccini, N., Paradiso, R., Porchet, J. A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Revol-Cavalier, F., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De-Moncuit, H., & Christina, B. (2010). BIOTEX-Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364-370. doi:10.1109/TITB.2009.2038484
  9. Griffiths, D. J., & Reeves, A. (1999). Electrodynamics. introduction to electrodynamics (3rd ed.). New Jersey: Prentice Hall.
  10. Ivetic, M., Mojovic, Z., & Matija, L. (2003). Electrical conductivity of fullerene derivatives. Materials Science Forum Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland. 413, 49-52. doi:10.4028/www.scientific.net/MSF.413.49
  11. Jang, E. J., & Cho, G. S. (2018). Development of PU nanoweb based electroconductive textiles and exploration of applicability as a transmission line for smart clothing. Fashion & Textile Research Journal, 20(1), 101-107. doi:10.5805/SFTI.2018.20.1.101
  12. Jang, E. J., Cho, H. S., & Cho, G. S. (2019a). Enhancing the conductivity of PEDOT:PSS/PU nanoweb via dimethyl sulfoxide solvent treatment. Proceedings of the Fiber Society 2019 Annual Spring Conference, Tsim Sha Tsui, Hong Kong, China, pp. 21-23, May, Meade, MD, USA: Fiber Society.
  13. Jang, E. J., Hang, L., & Cho, G. S. (2019b). Characterization and exploration of polyurethane nanofiber webs coated with graphene as a strain gauge. Textile Research Journal, 89(23-24), 4980-4991. doi:10.1177/0040517519844604
  14. Jeong, E. G., Jeon, Y., Cho, S. H., & Choi, K. C. (2019). Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy & Environmental Science, 12(6), 1878-1889. doi:10.1039/C8EE03271H
  15. Karpagam, K. R., Saranya, K. S., Gopinathan, J., & Bhattacharyya, A. (2017). Development of smart clothing for military applications using thermochromic colorants. The Journal of the Textile Institute, 108(7), 1122-1127. doi:10.1080/00405000.2016.1220818
  16. Kim, I. H., Lee, E. G., Jang, E. J., & Cho, G. S. (2018). Characteristics of polyurehtane nanowebs treated with silver nanowire solutions as strain sensors. Textile Research Journal, 88(11), 1215-1225. doi:10.1177/0040517517697647
  17. Kim, I. H., & Cho, G. S. (2018). Polyurethane nanofiber strain sensors via in-situ polymerization of polypyrrole and application to monitoring joint flexion. Smart Materials Structures, 27(7), 075006. doi:10.1088/1361-665X/aac0b2
  18. Kim, J., Campbell, A. S., de Ávila, B. E. F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology. 37, 389-406. doi:10.1038/s41587-019-0045-y
  19. Lee, E. G., & Cho, G. S. (2019). PU nanoweb-based textile electrode treated with single-walled carbon nanotube/silver nanowire and its application to ECG monitoring. Smart Materials Structures, 28(4), 045004. doi:10.1088/1361-665X/ab06e0
  20. Masuda, A., Murakami, T., Honda, K., & Yamaguchi, S. (2006). Optical properties of woven fabrics by plastic optical fiber. Journal of Textile Engineering, 52(3), 93-97. doi:10.4188//jte.52.93
  21. Mukai, K., Asaka, K., Wu, X., Morimoto, T., Okazaki, T., Saito, T., & Yumura, M. (2016). Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Applied Physics Express, 9(5), 055101. doi:10.7567/APEX.9.055101
  22. Pan, L. S., & Kania, D. R. (1994). Diamond: electronic properties and applications. Berlin: Springer.
  23. Pani, D., Achilli, A., Spanu, A., Bonfiglio, A., Gazzoni, M., & Botter, A. (2019). Validation of polymer-based screen-printed textile electrodes for surface EMG detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(7), 1370-1377 doi:10.1109/TNSRE.2019.2916397
  24. Park, S. H., Lee, H. B., Yeon, S. M., Park, J., & Lee, N. K. (2016). Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Applied Materials & Interfaces, 8(37), 24773-24781. doi:10.1021/acsami.6b07833
  25. Park, S. Y., Shin, M. K., Kim, H. J., Yeo, C. S., Cho, Y. J., & Cho, K. R. (2017). Method for manufacturing graphene oxide fiber, graphene fiber, and graphene or graphene (oxide) composite fiber by using elelctric field-induced wet spinning process. KO. Patent No. WO 2017/188564A1.
  26. Peters, K. (2010). Polymer optical fiber sensors -a review. Smart Materials and Structures, 20(1), 013002. doi:10.1088/0964-1726/20/1/013002
  27. Rothmaier, M., Luong, M., & Clemens, F. (2008a). Textile pressure sensor made of flexible plastic optical fibers. Sensors, 8(7), 4318-4329. doi:10.3390/s8074318
  28. Rothmaier, M., Selm, B., Spichtig, S., Haensse, D., & Wolf, M. (2008b). Photonic textiles for pulse oximetry. Optics Express, 16(17), 12973-12986. doi:10.1364/OE.16.012973
  29. Rubacha, M., & Zieba, J. (2007). Magnetic cellulose fibres and their application in textronics. Fibres & Textiles in Eastern Europe, 15(5), 64-65.
  30. Selm, B., Gurel, E. A., Rothmaier, M., Rossi, R. M., & Scherer, L. J. (2010). Polymeric optical fiber fabrics for illumination and sensorial applications in textiles. Journal of Intelligent Material Systems and Structures, 21(11), 1061-1071. doi:10.1177/1045389X10377676
  31. Serway, R. A., & Jewett, J. W. (1998). Principles of physics (Vol. 1). Fort Worth, TX: Saunders College Pub.
  32. Sinha, S. K., Noh, Y., Reljin, N., Treich, G. M., Hajeb-Mohammadalipour, S., Guo, Y., ... & Sotzing, G. A. (2017). Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Applied Materials & Interfaces, 9(43), 37524-37528. doi:10.1021/acsami.7b09954
  33. Sprogis, S. K., Currey, J., & Considine, J. (2019). Patient acceptability of wearable vital sign monitoring technologies in the acute care setting: a systematic review. Journal Clinicla Nursing, 28(15-16), 2732-2744. doi:10.1111/jocn.14893
  34. Takamatsu, S., Kobayashi, T., Shibayama, N., Miyake, K., & Itoh, T. (2011). Meter-scale surface capacitive type of touch sensors fabricated by weaving conductive-polymer-coated fibers. In 2011 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP). pp. 142-147. IEEE.
  35. Van Langenhove, L., & Hertleer, C. (2004). Smart clothing: a new life. International Journal of Clothing Science and Technology, 16(1/2), 63-72. doi:10.1108/09556220410520360
  36. Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X. M. (2014). Fiber based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310-5336. doi:10.1002/adma.201400633
  37. Zhong, Y., Zhang, F., Wang, M., Gardner, C. J., Kim, G., Liu, Y., ... & Chen, R. (2017). Reversible humidity sensitive clothing for personal thermoregulation. Scientific Reports, 7, 44208. doi:10.1038/srep44208