DOI QR코드

DOI QR Code

Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy

첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰

  • Choi, Sang Gyu (Department of Radiation Oncology, School of Medicine, Dankook University)
  • 최상규 (단국대학교 의과대학 방사선종양학교실)
  • Received : 2019.11.01
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

Keywords

References

  1. Choi SG. Recent advances in radiotherapy. Korean J Clin Geri. 2008;9(2):218-24.
  2. Wilson RR. Radiological use of fast protons. Radiology. 1946;47:487-91. https://doi.org/10.1148/47.5.487
  3. Allen C, Borak TB, Tsujii H, Nickoloff JA. Heavy charged particle radiobiology: Using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res. 2011;711:150-7. https://doi.org/10.1016/j.mrfmmm.2011.02.012
  4. Jereczek-Fossa BA, Krengli M, Orecchia R. Particle beam radiotherapy for head and neck tumors: Radiobiological basis and clinical experience. Head Neck. 2006;28:750-60. https://doi.org/10.1002/hed.20448
  5. Jermann M. Particle therapy statistics in 2014. Int J Part Ther. 2015;2:50-4. https://doi.org/10.14338/IJPT-15-00013
  6. Particle Therapy Patient Statistics (per end of 2015). Available online: https://www.ptcog.ch/archive/patient_statistics/Patientstatistics-updateDec2015.pdf (accessed on 27 March 2017).
  7. Johns HE, Cunningham JR. The interaction of inoizing radiation with matter. In: Johns HE, Cunningham JR. The physics of radiology. 4th ed. Springfield: Charles C Thomas Publisher, 1983:133-66.
  8. Lutz W. Radiation physics for radiosurgery. In: Alexander E III, Loeffler JS, Lunsford LD, ed. Stereotactic radiosurgery. 1st ed. New York: McGrawHill, 1993:7-15.
  9. Mohan R, Grosshans D. Proton therapy-Present and future. Adv Drug Deliv Rev. 2017;109:26-44. https://doi.org/10.1016/j.addr.2016.11.006
  10. Bragg W. On the ionization of various gases by the alpha particles of radium. Proc Phys Soc Lond. 1907;523-50.
  11. De Laney T. Proton and Charged Particle Radiotherapy. Lippincott, Williams and Wilkins: Philidephia, PA, USA, 2007.
  12. Lomax AJ. Charged particle therapy: The physics of interaction. Cancer J. 2009;15(4):285-91. doi: 10.1097/PPO.0b013e3181af5cc7.
  13. Uzawa A, Ando K, Koike S, Furusawa Y, Matsumoto Y, Takai N, et al. Comparison of biological effectiveness of carbon-ion beams in Japan and Germany. Int J Radiat Oncol Biol Phys. 2009;73:1545-51. https://doi.org/10.1016/j.ijrobp.2008.12.021
  14. Mohan R, Grosshans D. Proton therapy-Present and future. Adv Drug Deliv Rev. 2017 Jan 15;109:26-44. doi: 10.1016/j.addr.2016.11.006. Epub 2016 Dec 3.
  15. Weyrather WK, Debus J. Particle beams for cancer therapy. Clin Oncol (R Coll Radiol). 2003;15(1):S23-8. https://doi.org/10.1053/clon.2002.0185
  16. Hall E, Giaccia A. Radiobiology for the radiologist. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012.
  17. Weber U, Kraft G. Comparison of carbon ions Versus Protons. Cancer J. 2009;15(4):325-32. doi: 10.1097/PPO.0b013e3181b01935.
  18. Schulz-Ertner D, Nikoghosyan A, Hof H, Didinger B, Combs SE, JJkel O, et al. Carbon ion radiotherapy of skull base chondrosarcomas. Int J Radiat Oncol Biol Phys. 2007;67:171-7. https://doi.org/10.1016/j.ijrobp.2006.08.027
  19. Mizoe JE, Hasegawa A, Jingu K, Takagi R, Bessyo H, Morikawa T, et al, Results of carbon ion radiotherapy for head and neck cancer. Radiother Oncol. 2012;103:32-7. https://doi.org/10.1016/j.radonc.2011.12.013
  20. Yanagi T, Mizoe J, Hasegawa A, Takagi R, Bessho H, Onda T, et al. Mucosal malignant melanoma of the head and necktreated by carbon ion radiotherapy. Int J Radiat Oncol Biol Phys. 2009;74:15-20. https://doi.org/10.1016/j.ijrobp.2008.07.056
  21. Mizoe J, Hasegawa A, Takaki R, Bessho H, Onda T, Tsujii H. Carcon ion radiotherapy for skull base chordoma. Skull Base. 2009;19:219-24. https://doi.org/10.1055/s-0028-1114295
  22. Uhl M, Mattke M, Welzel T, Roeder F, Oelmann J, Habl G, et al. Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: First long-term results. Cancer. 2014 Nov 1;120(21):3410-7. doi: 10.1002/cncr.28877. Epub 2014 Jun 19.
  23. Koto M, Hasegawa A, Takagi R, Fujikawa A, Morikawa T, Kishimoto R, et al, Risk factors for brain injury after carbon ion radiotherapy for skull base tumors. Radiother Oncol. 2014 Apr;111(1):25-9. doi: 10.1016/j.radonc.2013.11.005. Epub 2013 Dec 11.
  24. Held T, Windisch P, Akbaba S, Lang K, El Shafie R, Bernhardt D, et al. Carbon ion reirradiation for recurrent head and neck cancer: A Single-institutional experience. Int J Radiat Oncol Biol Phys. 2019 Jul 23. pii: S0360-3016(19)33504-7. doi: 10.1016/j.ijrobp.2019.07.021. [Epub ahead of print]
  25. Sawabata N, Miyaoka E, Asamura H, Nakanishi Y, Eguchi K, Mori M, et al. Japanese lung cancer registry study of 11,663 surgical cases in 2004: demographic and prognosis changes over decade. J Thorac Oncol. 2011;6: 1229-1235. doi: 10.1097/JTO.0b013e318219aae2
  26. Widesott L, Amichetti M, Schwarz M. Proton therapy in lung cancer: Clinical outcomes and technical issues. A systematic review. Radiother Oncol. 2008 Feb;86(2):154-64. doi: 10.1016/j.radonc.2008.01.003. Epub 2008 Jan 31.
  27. Allen AM, Pawlicki T, Dong L, Fourkal E, Buyyounouski M, Cengel K, et al. An evidence based review of proton beam therapy: The report of ASTRO's emerging technology committee. Radiother Oncol. 2012 Apr;103(1):8-11. doi: 10.1016/j.radonc.2012.02.001. Epub 2012 Mar 9.
  28. Iwata H, Murakami M, Demizu Y, Miyawaki D, Terashima K, Niwa Y, et al. High-dose protontherapy and carbon-ion therapy for stage I non-small cell lungcancer. Cancer. 2010;116(10):2476-85. https://doi.org/10.1002/cncr.24998
  29. Fujii O, Demizu Y, Hashimoto N, Araya M, Takagi M, Terashima K, et al. A retrospective comparison of proton therapy and carbon ion therapy for stageI non-small cell lung cancer. Radiotherapy and Oncology. 2013;109(1):32-7. https://doi.org/10.1016/j.radonc.2013.08.038
  30. Miyamoto T, Baba M, Yamamoto N, Koto M, Sugawara T, Yashiro T, et al. Curative treatmentof Stage I non-small-cell lung cancer with carbon ion beamsusing a hypofractionated regimen. Int J Radiat Oncol Biol Phys. 2007 Mar 1;67(3):750-8. https://doi.org/10.1016/j.ijrobp.2006.10.006
  31. Grutters JP, Kessels AG, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin P. Comparison ofthe effectiveness of radiotherapy with photons, protons andcarbon-ions for non-small cell lung cancer: A meta-analysis. Radiotherapy and Oncology. 2010;95(1):32-40. https://doi.org/10.1016/j.radonc.2009.08.003
  32. Segawa Y, Kiura K, Takigawa N, Kamei H, Harita S, Hiraki S, et al. Phase III trial comparing docetaxel and cisplatin combination chemotherapy with mitomy-cin, vindesine, and cisplatin combination chemotherapy with con-current thoracic radiotherapy in locally advanced non-small-cell lung cancer: OLCSG 0007. J Clin Oncol. 2010;28(20):3299-306. https://doi.org/10.1200/JCO.2009.24.7577
  33. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consoli-dation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial p. Lancet Oncol. 2015;16(2):187-99. https://doi.org/10.1016/S1470-2045(14)71207-0
  34. Atagi S, Kawahara M, Yokoyama A, Okamoto H, Yamamoto N, Ohe Y, et al. Thoracic radiotherapy with or without daily low-dose carboplatin in elderly patients with non-small-cell lung cancer: A randomised, controlled, phase 3 trial by the Japan Clinical Oncology Group (JCOG0301). Lancet Oncol. 2012;13(7):671-8. https://doi.org/10.1016/S1470-2045(12)70139-0
  35. Sejpal S, Komaki R, Tsao A, Chang JY, Liao Z, Wei X, et al. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer. 2011;117(13): 3004-13. doi: 10.1002/cncr.25848
  36. Vyfhuis MAL, Onyeuku N, Diwanji T, Mossahebi S, Amin NP, Badiyan SN, et al. Advances in proton therapy in lung cancer. Ther Adv Respir Dis. 2018. doi: 10.1177/1753466618783878
  37. Karube M, Yamamoto N, Shioyama Y, Saito J, Matsunobu A, Okimoto T, et al. Carbon-ion radiotherapy for patients with advanced stage non-small-cell lung cancer at multicenters. J Radiat Res. 2017;58(5):761-4. https://doi.org/10.1093/jrr/rrx037
  38. Hayashi K, Yamamoto N, Nakajima M, Nomoto A, Tsuji H, Ogawa K, et al. Clinical outcomes of carbon-ion radiotherapy for locally advanced non-small-cell lung cancer. Cancer Sci. 2019 Feb;110(2):734-41. doi: 10.1111/cas.13890. Epub 2019 Jan 8.
  39. Hong TS, Ryan DP, Blaszkowsky LS, Mamon HJ, Kwak EL, Mino-Kenudson M, et al. Phase I study of preoperative short-course chemoradiation with proton beam therapy and capecitabine for resectable pancreatic ductal adenocarcinoma of the head. Int J Radiat Oncol Biol Phys. 2011;79:151-7. https://doi.org/10.1016/j.ijrobp.2009.10.061
  40. Sachsman S, Nichols RC, Morris CG, Zaiden R, Johnson EA, Awd Z, et al. Proton therapy and concomitant capecitabine for nonmetastatic unresectable pancreatic adenocarcinoma. Int J Particle Ther. 2014;1:692-701. https://doi.org/10.14338/IJPT.14-00006.1
  41. Okada T, Kamada T, Tsuji H, Mizoe JE, Baba M, Kato S, et al. Carbon ion radiotherapy: Clinical experiences at National Institute of Radiological Science (NIRS). J Radiat Res. 2010;51:355-64. https://doi.org/10.1269/jrr.10016
  42. Shinoto M, Yamada S, Yasuda S, Imada H, Shioyama Y, Honda H, et al. Phase 1 trial of preoperative, short-course carbon-ion radiotherapy for patients with resectable pancreatic cancer. Cancer. 2013;119:45-51. https://doi.org/10.1002/cncr.27723
  43. Kawashiro S, Yamada S, Okamoto M, Ohno T, Nakano T, Shinoto M, et al. Multi-institutional study of carbon-ion radiotherapy for locally advanced pancreatic cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 Pancreas. Int J Radiat Oncol Biol Phys. 2018 Aug 1;101(5):1212-21. doi: 10.1016/j.ijrobp.2018.04.057. Epub 2018 May 1.
  44. Zietman AL, Bae K, Slater JD, Shipley WU, Efstathiou JA, Coen JJ, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: Long-term results from proton radiation oncology group/american college of radiology 95-09. JAMA. 2010;303:1046-53. https://doi.org/10.1001/jama.2010.287
  45. Schulte RW, Slater JD, Rossi Jr CJ, Slater JM. Value and perspectives of proton radiation therapy for limited stage prostate cancer. Strahlenther Onkol. 2000;176:3-8. https://doi.org/10.1007/PL00002302
  46. Nihei K, Ogino T, Onozawa M, Murayama S, Fuji H, Murakami M, et al. Multi-institutional phase II study of proton beam therapy for organ-confined prostate cancer focusing on the incidence of late rectal toxicities. Int J Radiat Oncol Biol Phys. 2011;81:390-6. https://doi.org/10.1016/j.ijrobp.2010.05.027
  47. Takagi M, Demizu Y, Terashima K, Fujii O, Jin D, Niwa Y, et al. Long-term outcomes in patients treated with proton therapy for localized prostate cancer. Cancer Med. 2017;6:2234-43. https://doi.org/10.1002/cam4.1159
  48. Nomiya T, Tsuji H, Kawamura H, et al. A multi-institutional analysis of prospective studies of carbon ion radiotherapy for prostate cancer: A report from the Japan Carbon ion Radiation Oncology Study Group (J-CROS). Radiother Oncol. 2016;121:288-93. https://doi.org/10.1016/j.radonc.2016.10.009
  49. Ishikawa H, Tsuji H, Kamada T, Akakura K, Suzuki H, Shimazaki J, et al. Carbon-ion radiation therapy for prostate cancer. Int J Urol. 2012;19:296-305. https://doi.org/10.1111/j.1442-2042.2012.02961.x
  50. Ishikawa H, Katoh H, Kaminuma T, Kawamura H, Ito K, Matsui H, et al. Carbon-ion Radiotherapy for Prostate Cancer: Analysis ofMorbidities and Change in Health-related Quality of Life. Anticancer Research. 2015;35:5559-66.
  51. Song GS, Bae JR, Kim JG. A comparison for treatment planning of tomotherapy and proton therapy in prostate cancer. Journal of Radiological Science and Technology. 2013;36(1):31-8.
  52. Kim JS, Kim JK. Exposure dose of DIPS in proton therapy for pediatric cancer patients. Journal of Radiological Science and Technology. 2011;34(1):59-64.