DOI QR코드

DOI QR Code

가속된 열적 스트레스에 의한 PAI / Nano Silica 하이브리드 코일의 절연수명 추정

Estimation of Insulation Life of PAI/Nano Silica Hybrid Coil by Accelerated Thermal Stress

  • Park, Jae-Jun (Dept. of Electrical and Electronic Engineering, Kiee University)
  • 투고 : 2018.11.11
  • 심사 : 2018.12.25
  • 발행 : 2019.01.01

초록

In this paper, four types of insulation coils were fabricated by adding various kinds of glycols to improve the flexibility and adhesion of insulating coils in varnish dispersed with PAI / Nano Silica_15wt%. The applied voltage and frequency were 1.5 kV / 20 kHz for accelerated life evaluation. Through the 6th temperature stress level, the cause of the insulation breakdown of the coil was ignored and only the breakdown time was measured. The Arrhenius model was chosen based on the theoretical relationship between chemical reaction rate and temperature for estimating the insulation life of the coil due to accelerated thermal stress. Three types of distributions (Weibull, Lognormal, Exponential) were selected as the relationship between thermal stress model and distribution. The average insulation lifetime was estimated under the temperature stress of four types of insulation coils through the relationship between one kind of model and three kinds of distributions.

키워드

DHJGII_2019_v68n1_52_f0001.png 이미지

그림 1 PAI/Nano Silica Vanish 제조 및 코일 제작 Fig. 1 PAI/Nano silica vanish manufacture and coil production

DHJGII_2019_v68n1_52_f0002.png 이미지

그림 2 환경온도 & 절연파괴 수명 측정시스템 Fig. 2 Environmental temperature & insulation breakdown life measurement system

DHJGII_2019_v68n1_52_f0003.png 이미지

그림 3 인가된 인버터서지 출력파형 Fig. 3 Applied inverter surge output waveform

DHJGII_2019_v68n1_52_f0004.png 이미지

그림 4 4종류 코일의 온도 스트레스 가속열화에 의한 Arrhenius-Weibull 분포의 평균 절연수명 Fig. 4 Average Insulation life for Arrhenius-Weibull distribution induced to temperature stress of four types coils

DHJGII_2019_v68n1_52_f0005.png 이미지

그림 5 Coil_1~Coil_4의 아레니우스 모델인 수명- 온도스트레스 가속계수 특성 Fig. 5 Life-temperature stress acceleration factor characteristic of arrhenius model of Coil_1~Coil_4

표 1 제조된 코일의 종류 및 내용 Table 1 Types and contents of manufactured coil

DHJGII_2019_v68n1_52_t0001.png 이미지

표 2 Arrhenius-Weibull 분포의 수명-온도스트레스 계수 Table 2 Life-Temperature stress coefficient of Arrhenius- Weibull distribution

DHJGII_2019_v68n1_52_t0002.png 이미지

표 3 Arrhenius-lognormal분포의 수명-온도스트레스 계수 Table 3 Life-Temperature stress coefficient of Arrheniuslognormal distribution

DHJGII_2019_v68n1_52_t0003.png 이미지

표 4 Arrhenius-Exponential분포의 수명-온도스트레스 계수 Table 4 Life-Temperature stress coefficient of Arrhenius-Exponential distribution

DHJGII_2019_v68n1_52_t0004.png 이미지

Table 5 Average lifetime of four types coils for three Arrhenius models–distribution 표 5 3종류 Arrhenius 모델-분포에 대한 4가지 코일의 평균수명

DHJGII_2019_v68n1_52_t0005.png 이미지

표 6 Arrhenius-Weibull 관계에서 4종류 코일의 가속계수 Table 6 Acceleration coefficients of four types of coils in the Arrhenius-Weibull relation

DHJGII_2019_v68n1_52_t0006.png 이미지

참고문헌

  1. V. M. Montsinger, "Loading transformers by temperature", AlEE Trans., Vol. 67, pp. 113-122, 1944.
  2. T. W. Dakin",Electrical insulation deterioration treated 8s a chemical rate phenomenon", AIEE Trans, Vol. 67, pp. 113-122, 1948.
  3. W. Nelson, "Analysis of Accelerated Life Test Data - Part I/The Arrhenius Model and Graphical Methods", IEEE Trans. Electr. Insul., Vol. 6, pp. 165-181, 1971. https://doi.org/10.1109/TEI.1971.299172
  4. W. Nelson, "Analysis of Accelerated Life Test Data Part II / Numerical Methods and Test Planning", IEEE Trans. Electr. Insul., Vol. 7, pp. 3655, 1972.
  5. L. Simoni, "A General Approach to the Endurance of Electrical Insulation under Temperature and Voltage", IEEE Trans. Electr. Insul., Vol. 16, pp. 277-289, 1981. https://doi.org/10.1109/TEI.1981.298361
  6. G.C. Montanari and F.J. Lebok, "Thermal degradation of electrical insulating materials and the thermo kinetic background experimental data", IEEE Trans. Electr. Insul., Vol. 25, pp. 1037-1045, 1990. https://doi.org/10.1109/14.64488
  7. G.C. Montanari, G. Mazzanti and L. Simoni, "Progress in Electrothermal Life Modeling of Electrical Insulation during the Last Decades", IEEE Trans. Dielectr. Electr. Insul., Vol. 9, pp. 730-745, 2002. https://doi.org/10.1109/TDEI.2002.1038660
  8. Hideo Hirose, Takenori Sakumura,"Foundation of Mathematical Deterioration Models for the Thermal Stress", IEEE Trans. Dielectr. Electr. Insul., Vol. 22, No. 1, pp. 482-487, 2015. https://doi.org/10.1109/TDEI.2014.004450
  9. Hideo Hirose, Takenori Sakumura and Naoki Tabuchi, "Optimum and Semi-optimum Life Test Plans of Electrical Insulation for Thermal Stress", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 1; page 488-494, 2015. https://doi.org/10.1109/TDEI.2014.004506
  10. W.Q. Meeker, "A Comparison of Accelerated Life Test Plans for Weibull and Lognormal Distributions and Type I Censoring", Technometrics, Vol. 26, pp. 157-171, 1984. https://doi.org/10.1080/00401706.1984.10487941
  11. C.A. Meeter and W.Q. Meeker, "Optimum Accelerated Life Tests With a Nonconstant Scale Parameter", Technometrics, Vol. 36, pp. 71-83, 1994. https://doi.org/10.1080/00401706.1994.10485402
  12. Masakazu Mesaki, Yoshinori Tatematsu and Hideki Goda, "Hybrid Composites of PolyamideImide and Silica Applied to Wire Insulation", Furukawa Review, No. 22, page 1-4, 2002.
  13. J. C. Fothergill, "Estimating the Cumulative Probability of Failure Data Points to be plotted on Weibull and other Probability Paper", IEEE Trans. on Electrical Insulation, Vol. El-25, No. 3, June.
  14. Accelerated Life Testing Reference(ALTA 7), ReliaSoft Characteristics of Publishing, Tucson, Arizona, 2008.
  15. Life Data Analysis Reference (Weibull ++7) ReliaSoft Characteristics of Publishing, Tucson, Arizona, 2008.
  16. Calculation of breakdown voltage (Test acc. To IEC 60851.5.4.2, cylinder).
  17. Indian Standard WINDING WIRES - TEST METHODS PART 5 ELECTRICAL PROPERTIES (First Revision) IS 13778 (Part 5) : 2012 IEC 60851-5 : 2008.