DOI QR코드

DOI QR Code

Recent Advance in Very Early Onset Inflammatory Bowel Disease

  • Shim, Jung Ok (Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine)
  • Received : 2018.11.24
  • Accepted : 2018.11.28
  • Published : 2019.01.15

Abstract

Recent studies on pediatric inflammatory bowel disease (IBD) have revealed that early-onset IBD has distinct phenotypic differences compared with adult-onset IBD. In particular, very early-onset IBD (VEO-IBD) differs in many aspects, including the disease type, location of the lesions, disease behavior, and genetically attributable risks. Several genetic defects that disturb intestinal epithelial barrier function or affect immune function have been noted in these patients from the young age groups. In incidence of pediatric IBD in Korea has been increasing since the early 2000s. Neonatal or infantile-onset IBD develops in less than 1% of pediatric patients. Children with "neonatal IBD" or "infantile-onset IBD" have higher rates of affected first-degree relatives, severe disease course, and a high rate of resistance to immunosuppressive treatment. The suspicion of a monogenic cause of VEO-IBD was first confirmed by the discovery of mutations in the genes encoding the interleukin 10 (IL-10) receptors that cause impaired IL-10 signaling. Patients with such mutations typically presented with perianal fistulae, shows a poor response to medical management, and require early surgical interventions in the first year of life. To date, 60 monogenic defects have been identified in children with IBD-like phenotypes. The majority of monogenic defects presents before 6 years of age, and many present before 1 year of age. Next generation sequencing could become an important diagnostic tool in children with suspected genetic defects especially in children with VEO-IBD with severe disease phenotypes. VEO-IBD is a phenotypically and genetically distinct disease entity from adult-onset or older pediatric IBD.

Keywords

References

  1. Moran CJ. Very early onset inflammatory bowel disease. Semin Pediatr Surg 2017;26:356-9. https://doi.org/10.1053/j.sempedsurg.2017.10.004
  2. Seo JK. Pediatric Inflammatory Bowel Disease (IBD): phenotypic, genetic and therapeutic differences between early-onset and adult-onset IBD. Korean J Pediatr Gastroenterol Nutr 2011;14:1-25. https://doi.org/10.5223/kjpgn.2011.14.1.1
  3. Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 2014;147:990-1007.e3. https://doi.org/10.1053/j.gastro.2014.07.023
  4. Ekbom A, Helmick C, Zack M, Adami HO. The epidemiology of inflammatory bowel disease: a large, population-based study in Sweden. Gastroenterology 1991;100:350-8. https://doi.org/10.1016/0016-5085(91)90202-V
  5. Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 2004;126:1504-17. https://doi.org/10.1053/j.gastro.2004.01.063
  6. Benchimol EI, Fortinsky KJ, Gozdyra P, Van den Heuvel M, Van Limbergen J, Griffiths AM. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis 2011;17:423-39. https://doi.org/10.1002/ibd.21349
  7. Benchimol EI, Manuel DG, Guttmann A, Nguyen GC, Mojaverian N, Quach P, et al. Changing age demographics of inflammatory bowel disease in Ontario, Canada: a population-based cohort study of epidemiology trends. Inflamm Bowel Dis 2014;20:1761-9. https://doi.org/10.1097/MIB.0000000000000103
  8. Grieci T, Butter A. The incidence of inflammatory bowel disease in the pediatric population of Southwestern Ontario. J Pediatr Surg 2009;44:977-80. https://doi.org/10.1016/j.jpedsurg.2009.01.038
  9. Shim JO, Han K. Treatment patterns and prognosis of inflammatory bowel disease: a nationwide epidemiologic study. Paper presented at: Korean Digestive Disease Week (KDDW) 2017; 2017 Nov 23-25; Seoul, Korea. p. 100.
  10. Bequet E, Sarter H, Fumery M, Vasseur F, Armengol- Debeir L, Pariente B, et al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a populationbased study [1988-2011]. J Crohns Colitis 2017;11:519-26.
  11. Levine A, Griffiths A, Markowitz J, Wilson DC, Turner D, Russell RK, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis 2011;17:1314-21. https://doi.org/10.1002/ibd.21493
  12. Hyams JS. Standardized recording of parameters related to the natural history of inflammatory bowel disease: from Montreal to Paris. Dig Dis 2014;32:337-44. https://doi.org/10.1159/000358133
  13. Doecke JD, Simms LA, Zhao ZZ, Huang N, Hanigan K, Krishnaprasad K, et al. Genetic susceptibility in IBD: overlap between ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2013;19:240-5. https://doi.org/10.1097/MIB.0b013e3182810041
  14. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015;47:979-86. https://doi.org/10.1038/ng.3359
  15. Zhang Y, Tian L, Sleiman P, Ghosh S, Hakonarson H. Bayesian analysis of genome-wide inflammatory bowel disease data sets reveals new risk loci. Eur J Hum Genet 2018;26:265-74. https://doi.org/10.1038/s41431-017-0041-y
  16. Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, et al. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 2014;63:80-7. https://doi.org/10.1136/gutjnl-2013-305193
  17. Essers JB, Lee JJ, Kugathasan S, Stevens CR, Grand RJ, Daly MJ. Established genetic risk factors do not distinguish early and later onset Crohn's disease. Inflamm Bowel Dis 2009;15:1508-14. https://doi.org/10.1002/ibd.20922
  18. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 2009;361:2033-45. https://doi.org/10.1056/NEJMoa0907206
  19. Shim JO, Seo JK. Very early-onset inflammatory bowel disease (IBD) in infancy is a different disease entity from adult-onset IBD; one form of interleukin-10 receptor mutations. J Hum Genet 2014;59:337-41. https://doi.org/10.1038/jhg.2014.32
  20. Shim JO, Hwang S, Yang HR, Moon JS, Chang JY, Ko JS, et al. Interleukin-10 receptor mutations in children with neonatal-onset Crohn's disease and intractable ulcerating enterocolitis. Eur J Gastroenterol Hepatol 2013;25:1235-40. https://doi.org/10.1097/meg.0b013e328361a4f9
  21. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 2011;13:255-62. https://doi.org/10.1097/GIM.0b013e3182088158
  22. Kim SC. Monozygotic twin cases of XIAP deficiency syndrome. J Pediatr Gastroenterol Nutr 2018;67:e101. https://doi.org/10.1097/MPG.0000000000001536
  23. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol 2012;3:211. https://doi.org/10.3389/fimmu.2012.00211
  24. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 2007;119:482-7. https://doi.org/10.1016/j.jaci.2006.10.007
  25. Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol 2013;131:1611-23. https://doi.org/10.1016/j.jaci.2012.11.054
  26. Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 2012;143:347-55. https://doi.org/10.1053/j.gastro.2012.04.045
  27. Li Q, Lee CH, Peters LA, Mastropaolo LA, Thoeni C, Elkadri A, et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology 2016;150:1196-207. https://doi.org/10.1053/j.gastro.2016.01.031
  28. Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM, Brooke MA, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med 2011;365:1502-8. https://doi.org/10.1056/NEJMoa1100721
  29. Freeman EB, Koglmeier J, Martinez AE, Mellerio JE, Haynes L, Sebire NJ, et al. Gastrointestinal complications of epidermolysis bullosa in children. Br J Dermatol 2008;158:1308-14. https://doi.org/10.1111/j.1365-2133.2008.08507.x
  30. Hayes P, Dhillon S, O'Neill K, Thoeni C, Hui KY, Elkadri A, et al. Defects in NADPH oxidase genes NOX1 and DUOX2 in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2015;1:489-502. https://doi.org/10.1016/j.jcmgh.2015.06.005
  31. Fiskerstrand T, Arshad N, Haukanes BI, Tronstad RR, Pham KD, Johansson S, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med 2012;366:1586-95. https://doi.org/10.1056/NEJMoa1110132
  32. Cheng LE, Kanwar B, Tcheurekdjian H, Grenert JP, Muskat M, Heyman MB, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol 2009;132:124-31. https://doi.org/10.1016/j.clim.2009.03.514
  33. Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H, Zhao Z, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 2014;146:1028-39. https://doi.org/10.1053/j.gastro.2014.01.015
  34. Schappi MG, Smith VV, Goldblatt D, Lindley KJ, Milla PJ. Colitis in chronic granulomatous disease. Arch Dis Child 2001;84:147-51. https://doi.org/10.1136/adc.84.2.147
  35. Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, Li XJ, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 2009;114:3309-15. https://doi.org/10.1182/blood-2009-07-231498
  36. Al-Bousafy A, Al-Tubuly A, Dawi E, Zaroog S, Schulze I. Libyan boy with autosomal recessive trait (P22-phox defect) of chronic granulomatous disease. Libyan J Med 2006;1:162-71. https://doi.org/10.3402/ljm.v1i2.4675
  37. Huang C, De Ravin SS, Paul AR, Heller T, Ho N, Wu Datta L, et al. Genetic risk for inflammatory bowel disease is a determinant of Crohn's disease development in chronic granulomatous disease. Inflamm Bowel Dis 2016;22:2794-801. https://doi.org/10.1097/MIB.0000000000000966
  38. Begin P, Patey N, Mueller P, Rasquin A, Sirard A, Klein C, et al. Inflammatory bowel disease and T cell lymphopenia in G6PC3 deficiency. J Clin Immunol 2013;33:520-5. https://doi.org/10.1007/s10875-012-9833-6
  39. Visser G, Rake JP, Fernandes J, Labrune P, Leonard JV, Moses S, et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr 2000;137:187-91. https://doi.org/10.1067/mpd.2000.105232
  40. D'Agata ID, Paradis K, Chad Z, Bonny Y, Seidman E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut 1996;39:605-8. https://doi.org/10.1136/gut.39.4.605
  41. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 2014;345:1623-7. https://doi.org/10.1126/science.1255904
  42. Meeths M, Entesarian M, Al-Herz W, Chiang SC, Wood SM, Al-Ateeqi W, et al. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2. Blood 2010;116:2635-43. https://doi.org/10.1182/blood-2010-05-282541
  43. Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G, Peuker K, et al. XIAP variants in male Crohn's disease. Gut 2015;64:66-76. https://doi.org/10.1136/gutjnl-2013-306520
  44. Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 2011;117:53-62. https://doi.org/10.1182/blood-2010-06-284935
  45. Sari S, Egritas O, Dalgic B. The familial Mediterranean fever (MEFV) gene may be a modifier factor of inflammatory bowel disease in infancy. Eur J Pediatr 2008;167:391-3. https://doi.org/10.1007/s00431-007-0508-x
  46. Villani AC, Lemire M, Louis E, Silverberg MS, Collette C, Fortin G, et al. Genetic variation in the familial Mediterranean fever gene (MEFV) and risk for Crohn's disease and ulcerative colitis. PLoS One 2009;4:e7154. https://doi.org/10.1371/journal.pone.0007154
  47. Hazzan D, Seward S, Stock H, Zisman S, Gabriel K, Harpaz N, et al. Crohn's-like colitis, enterocolitis and perianal disease in Hermansky-Pudlak syndrome. Colorectal Dis 2006;8:539-43. https://doi.org/10.1111/j.1463-1318.2006.01046.x
  48. Anderson PD, Huizing M, Claassen DA, White J, Gahl WA. Hermansky-Pudlak syndrome type 4 (HPS-4): clinical and molecular characteristics. Hum Genet 2003;113:10-7. https://doi.org/10.1007/s00439-003-0933-5
  49. Mora AJ, Wolfsohn DM. The management of gastrointestinal disease in Hermansky-Pudlak syndrome. J Clin Gastroenterol 2011;45:700-2. https://doi.org/10.1097/MCG.0b013e3181fd2742
  50. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 2014;46:812-4. https://doi.org/10.1038/ng.3040
  51. Bader-Meunier B, Florkin B, Sibilia J, Acquaviva C, Hachulla E, Grateau G, et al. Mevalonate kinase deficiency: a survey of 50 patients. Pediatrics 2011;128:e152-9. https://doi.org/10.1542/peds.2010-3639
  52. Zhou Q, Lee GS, Brady J, Datta S, Katan M, Sheikh A, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase $C{\gamma}2$, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 2012;91:713-20. https://doi.org/10.1016/j.ajhg.2012.08.006
  53. Agarwal S, Mayer L. Pathogenesis and treatment of gastrointestinal disease in antibody deficiency syndromes. J Allergy Clin Immunol 2009;124:658-64. https://doi.org/10.1016/j.jaci.2009.06.018
  54. Conley ME, Dobbs AK, Quintana AM, Bosompem A, Wang YD, Coustan-Smith E, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the $p85{\alpha}$ subunit of PI3K. J Exp Med 2012;209:463-70. https://doi.org/10.1084/jem.20112533
  55. Takahashi N, Matsumoto K, Saito H, Nanki T, Miyasaka N, Kobata T, et al. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol 2009;182:5515-27. https://doi.org/10.4049/jimmunol.0803256
  56. Burns SO, Zenner HL, Plagnol V, Curtis J, Mok K, Eisenhut M, et al. LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol 2012;130:1428-32. https://doi.org/10.1016/j.jaci.2012.07.035
  57. Salzer E, Kansu A, Sic H, Majek P, Ikinciogullari A, Dogu FE, et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J Allergy Clin Immunol 2014;133:1651-9.e12. https://doi.org/10.1016/j.jaci.2014.02.034
  58. Knight SW, Heiss NS, Vulliamy TJ, Aalfs CM, McMahon C, Richmond P, et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br J Haematol 1999;107:335-9. https://doi.org/10.1046/j.1365-2141.1999.01690.x
  59. Ballew BJ, Joseph V, De S, Sarek G, Vannier JB, Stracker T, et al. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet 2013;9:e1003695. https://doi.org/10.1371/journal.pgen.1003695
  60. Sanal O, Jing H, Ozgur T, Ayvaz D, Strauss-Albee DM, Ersoy-Evans S, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol 2012;32:698-708. https://doi.org/10.1007/s10875-012-9664-5
  61. Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 1997;131:47-54. https://doi.org/10.1016/S0022-3476(97)70123-9
  62. Quartier P, Bustamante J, Sanal O, Plebani A, Debre M, Deville A, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin Immunol 2004;110:22-9. https://doi.org/10.1016/j.clim.2003.10.007
  63. Arnaiz-Villena A, Timon M, Corell A, Perez-Aciego P, Martin-Villa JM, Regueiro JR. Brief report: primary immunodeficiency caused by mutations in the gene encoding the CD3-gamma subunit of the T-lymphocyte receptor. N Engl J Med 1992;327:529-33. https://doi.org/10.1056/NEJM199208203270805
  64. Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med 2016;213:155-65. https://doi.org/10.1084/jem.20150888
  65. de Saint-Basile G, Le Deist F, Caniglia M, Lebranchu Y, Griscelli C, Fischer A. Genetic study of a new X-linked recessive immunodeficiency syndrome. J Clin Invest 1992;89:861-6. https://doi.org/10.1172/JCI115665
  66. Felgentreff K, Perez-Becker R, Speckmann C, Schwarz K, Kalwak K, Markelj G, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol 2011;141:73-82. https://doi.org/10.1016/j.clim.2011.05.007
  67. Ozgur TT, Asal GT, Cetinkaya D, Orhan D, Kilic SS, Usta Y, et al. Hematopoietic stem cell transplantation in a CD3 gamma-deficient infant with inflammatory bowel disease. Pediatr Transplant 2008;12:910-3. https://doi.org/10.1111/j.1399-3046.2008.00957.x
  68. de Saint Basile G, Geissmann F, Flori E, Uring-Lambert B, Soudais C, Cavazzana-Calvo M, et al. Severe combined immunodeficiency caused by deficiency in either the delta or the epsilon subunit of CD3. J Clin Invest 2004;114:1512-7. https://doi.org/10.1172/JCI200422588
  69. Rohr J, Pannicke U, Doring M, Schmitt-Graeff A, Wiech E, Busch A, et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency. J Clin Immunol 2010;30:314-20. https://doi.org/10.1007/s10875-009-9349-x
  70. Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001;105:177-86. https://doi.org/10.1016/S0092-8674(01)00309-9
  71. Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol 2012;3:209. https://doi.org/10.3389/fimmu.2012.00209
  72. Stengaard-Pedersen K, Thiel S, Gadjeva M, Moller-Kristensen M, Sorensen R, Jensen LT, et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med 2003;349:554-60. https://doi.org/10.1056/NEJMoa022836
  73. Fabre A, Charroux B, Martinez-Vinson C, Roquelaure B, Odul E, Sayar E, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet 2012;90:689-92. https://doi.org/10.1016/j.ajhg.2012.02.009
  74. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013;341:1233151. https://doi.org/10.1126/science.1233151
  75. Barzaghi F, Passerini L, Gambineri E, Ciullini Mannurita S, Cornu T, Kang ES, et al. Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J Autoimmun 2012;38:49-58. https://doi.org/10.1016/j.jaut.2011.12.009
  76. Rialon KL, Crowley E, Seemann NM, Fahy AS, Muise A, Langer JC. Long-term outcomes for children with very early-onset colitis: implications for surgical management. J Pediatr Surg 2018;53:964-7. https://doi.org/10.1016/j.jpedsurg.2018.02.023
  77. Samuels ME, Majewski J, Alirezaie N, Fernandez I, Casals F, Patey N, et al. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia. J Med Genet 2013;50:324-9. https://doi.org/10.1136/jmedgenet-2012-101483
  78. Benchimol EI, Mack DR, Nguyen GC, Snapper SB, Li W, Mojaverian N, et al. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology 2014;147:803-13.e7; quiz e14-5. https://doi.org/10.1053/j.gastro.2014.06.023
  79. Kim KY, Lee EJ, Kim JW, Moon JS, Jang JY, Yang HR, et al. Higher morbidity of monogenic inflammatory bowel disease compared to the adolescent onset inflammatory bowel disease. Pediatr Gastroenterol Hepatol Nutr 2018;21:34-42. https://doi.org/10.5223/pghn.2018.21.1.34

Cited by

  1. Novel XIAP mutation causing enhanced spontaneous apoptosis and disturbed NOD2 signalling in a patient with atypical adult-onset Crohn’s disease vol.11, pp.6, 2019, https://doi.org/10.1038/s41419-020-2652-4
  2. Triclosan has a robust, yet reversible impact on human gut microbial composition in vitro vol.15, pp.6, 2019, https://doi.org/10.1371/journal.pone.0234046
  3. Very Early-Onset Inflammatory Bowel Disease: A Challenging Field for Pediatric Gastroenterologists vol.23, pp.5, 2019, https://doi.org/10.5223/pghn.2020.23.5.411
  4. Outcomes of Initial Subtotal Colectomy for Pediatric Inflammatory Bowel Disease vol.255, 2019, https://doi.org/10.1016/j.jss.2020.05.026
  5. Complications of enterostomy and related risk factor analysis of very early onset inflammatory bowel disease with interleukin-10 signalling deficiency: a single-centre retrospective analysis vol.20, 2020, https://doi.org/10.1186/s12876-020-1160-4
  6. Importance of early detection of infantile inflammatory bowel disease with defective IL-10 pathway : A case report vol.100, pp.21, 2021, https://doi.org/10.1097/md.0000000000025868
  7. The Evolution of Very Early Onset Inflammatory Bowel Disease, Autoimmune Hepatitis, and Primary Sclerosing Cholangitis in a Young Girl vol.15, pp.3, 2019, https://doi.org/10.1159/000520184
  8. Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development vol.147, pp.1, 2021, https://doi.org/10.1016/j.jaci.2020.09.003
  9. Needs for Increased Awareness of Gastrointestinal Manifestations in Patients With Human Inborn Errors of Immunity vol.12, 2019, https://doi.org/10.3389/fimmu.2021.698721
  10. Acquired Rectourethral and Rectovaginal Fistulas in Children: A Systematic Review vol.9, 2021, https://doi.org/10.3389/fped.2021.657251
  11. Case Report: A Novel Compound Heterozygous Mutation in IL-10RA in a Chinese Child With Very Early-Onset Inflammatory Bowel Disease vol.9, 2019, https://doi.org/10.3389/fped.2021.678390
  12. Safety and Effectiveness of Vedolizumab for the Treatment of Pediatric Patients with Very Early Onset Inflammatory Bowel Diseases vol.10, pp.13, 2019, https://doi.org/10.3390/jcm10132997
  13. Risk Factors for Disease Behavior Evolution and Efficacy of Biologics in Reducing Progression in Pediatric Patients with Nonstricturing, Nonpenetrating Crohn's Disease at Diagnosis: A Single-Center Ex vol.15, pp.6, 2021, https://doi.org/10.5009/gnl20279
  14. Interleukin 10 and interleukin 10 receptor in paediatric inflammatory bowel disease: from bench to bedside lesson vol.18, pp.1, 2019, https://doi.org/10.1186/s12950-021-00279-3
  15. Dermatologic Manifestations of Systemic Diseases in Childhood vol.42, pp.12, 2019, https://doi.org/10.1542/pir.2020-000679