KYUNGPOOK Math. J. 59(2019), 797-820 https://doi.org/10.5666/KMJ.2019.59.4.797 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Cross-index of a Graph

Akio Kawauchi*

Osaka City University Advanced Mathematical Institute, Sugimoto, Sumiyoshi-ku, Osaka 558-8585. Japan

 $e ext{-}mail: kawauchi@sci.osaka-cu.ac.jp}$

Ayaka Shimizu and Yoshiro Yaguchi

Department of Mathematics, National Institute of Technology, Gunma College, 580 Toriba-cho, Maebashi-shi, Gunma 371-8530, Japan

e-mail: shimizu@nat.gunma-ct.ac.jp and yaguchi-y@nat.gunma-ct.ac.jp

ABSTRACT. For every tree T, we introduce a topological invariant, called the T-cross-index, for connected graphs. The T-cross-index of a graph is a non-negative integer or infinity according to whether T is a tree basis of the graph or not. It is shown how this cross-index is independent of the other topological invariants of connected graphs, such as the Euler characteristic, the crossing number and the genus.

1. Introduction

A based graph is a pair (G;T) such that G is a connected graph and T is a maximal tree of G, called a tree basis of G. A based diagram (D;X) of the based graph (G;T) is defined in § 2. Then the crossing number c(G;T) of the based graph (G,T) is defined to be the minimum of the crossing numbers c(D;X) for all based diagrams (D;X) of (G;T). The genus g(D;X), the nullity $\nu(D;X)$ and the cross-index $\varepsilon(D;X)$ are defined by using the \mathbb{Z}_2 -form

$$\varepsilon: \mathbb{Z}_2[D;X] \times \mathbb{Z}_2[D;X] \to \mathbb{Z}_2$$

on (D; X), which are invariants of non-negative integer values of the based diagram (D; X). The genus g(G; T) and the cross-index $\varepsilon(G; T)$ are defined to be the minimums of the genera g(D; X) and the cross-indexes $\varepsilon(D; X)$ for all based diagrams

Received January 14, 2018; revised February 11, 2019; accepted February 13, 2019. 2010 Mathematics Subject Classification: 68R10.

 $\ \, \text{Key words and phrases: based graph, crossing number, genus, nullity, cross-index.} \\$

The first author was supported by JSPS KAKENHI Grant Number 24244005.

The second author was supported by Grant for Basic Science Research Projects from The Sumitomo Foundation (160154).

^{*} Corresponding Author.

(D;X) of (G;T), respectively, whereas the nullity $\nu(G;T)$ is defined to be the maximum of the nullities $\nu(D;X)$ for all based diagrams (D;X) of (G;T). Thus, c(G;T), g(G;T), $\nu(G;T)$, $\varepsilon(G;T)$ are topological invariants of the based graph (G;T). The relationships between the topological invariants c(G;T), g(G;T), $\nu(G;T)$, $\varepsilon(G;T)$ of (G;T), the genus g(G) and the Euler characteristic $\chi(G)$ of the graph G are explained in § 2. In particular, the identities

$$c(G;T) = \varepsilon(G;T), \quad g(G;T) = g(G), \quad \nu(G;T) = 1 - \chi(G) - 2g(G)$$

are established. In particular, it turns out that the crossing number c(G;T) of (G;T) is a calculable invariant in principle. The idea of a cross-index is also applied to study complexities of a knitting pattern in [5].

For a tree T, this invariant c(G;T) is modified as follows into a topological invariant $c^{T}(G)$, called the T-cross-index, of a graph G.

Define $c^T(G)$ to be the minimum of the invariants c(G; T') for all tree bases T' of G homeomorphic to T. If there is no tree basis of G homeomorphic to T, then define $c^T(G) = \infty$.

Let $c^*(G)$ be the family of the invariants $c^T(G)$ for all trees T. The minimal value $c^{\min}(G)$ in the family $c^*(G)$ has appeared as the crossing number of a Γ -unknotted graph in the paper [3] on spatial graphs. The crossing number c(G) of a graph G is defined to be the minimum of the crossing numbers c(D) of all diagrams D of G (in the plane). It is an open question whether $c^{\min}(G)$ is equal to the crossing number c(G) of any connected graph G.

The finite maximal value $c^{\max}(G)$ in the family $c^*(G)$ is a well-defined invariant, because there are only finitely many tree bases of G. In the inequalities

$$c^{\max}(G) \ge c^{\min}(G) \ge c(G) \ge g(G)$$

for every connected graph G which we establish, the following properties are mutually equivalent:

- (i) G is a planar graph.
- (ii) $c^{\max}(G) = 0$.
- (iii) $c^{\min}(G) = 0.$
- (iv) c(G) = 0.
- (v) g(G) = 0.

In § 3, the case of the *n*-complete graph K_n $(n \ge 5)$ is discussed in a connection to Guy's conjecture on the crossing number $c(K_n)$. It is shown that $c^{\min}(K_5) = c^{\max}(K_5)$ and $c^{\min}(K_n) < c^{\max}(K_n)$ for every $n \ge 6$. Thus, the invariants $c^{\min}(G)$ and $c^{\max}(G)$ are different invariants for a general connected graph G.

The main purpose of this paper is to show that the family $c^*(G)$ is more or less a new invariant. For this purpose, for a real-valued invariant I(G) of a connected graph G which is not bounded when G goes over the range of all connected graphs, we introduce a virtualized invariant $\tilde{I}(G)$ of G which is defined to be $\tilde{I}(G) = f(I(G))$ for a fixed non-constant real polynomial f(x) in x. Every time a different non-constant polynomial f(t) is given, a different virtualized invariant $\tilde{I}(G)$ is obtained from the invariant I(G). Then the main result is stated as follows, showing a certain independence between the cross-index $c^*(G)$ and the other invariants $c(G), g(G), \chi(G)$.

Theorem 4.1. Let $\tilde{c}^{max}(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ be any virtualized invariants of the invariants $c^{max}(G), c(G), g(G), \chi(G)$, respectively. Every linear combination of the invariants $\tilde{c}^{max}(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ in real coefficients including a non-zero number is not bounded when G goes over the range of all connected graphs.

The proof of this theorem is given in $\S 4$.

As an appendix, it is shown how the non-isomorphic tree bases are tabulated in case of the complete graph K_{11} . This tabulation method is important to compute the T-cross index $c^T(K_n)$ for a tree basis T of K_n , because we have $c^T(K_n) = c(K_n; T)$ for every tree basis T (see Lemma 3.1).

2. The Cross-index of a Graph associated to a Tree

By a graph, a connected graph G with only topological edges and without vertexes of degrees 0, 1 and 2 is meant. Let G have $n(\geq 1)$ vertexes and $s(\geq 1)$ edges. By definition, if n = 1 (that is, G is a bouquet of loops), then every tree basis T of G has one vertex. A diagram of a graph G is a representation D of G in the plane so that the vertexes of G are represented by distinct points and the edges of G are represented by arcs joining the vertexes which may have transversely meeting double points avoiding the vertexes. A double point on the edges of a diagram D is called a crossing of G. In this paper, to distinguish between a degree 4 vertex and a crossing, a crossing is denoted by a crossing with over-under information except in Figs. 7,8 representing diagrams of the graphs G without degree 4 vertexes. A tree diagram of a tree G is a diagram G of G without crossings. A based diagram of a based graph G is a pair G where G is a diagram of G and G is a sub-diagram of G such that G is a tree diagram of the tree basis G without crossings in G. In this case, the diagram G is called a tree basis diagram. The following lemma is used without proof in the author's earlier papers G and G is

Lemma 2.1. Given any based graph (G;T) in \mathbb{R}^3 , then every spatial graph diagram of G is transformed into a based diagram (D;X) of (G;T) only with crossings with over-under information by the Reidemeister moves I-V (see Fig. 1).

Proof. In any spatial graph diagram D' of G, first transform the sub-diagram D(T) of the tree basis T in D' into a tree diagram X by the Reidemeister moves I-V. Since a regular neighborhood $N(X; \mathbb{R}^2)$ of X in the plane \mathbb{R}^2 is a disk, a based

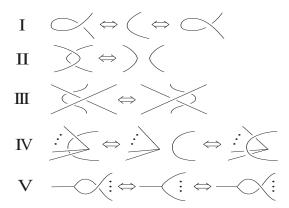


Figure 1: The Reidemeister moves

diagram is obtained by shrinking this tree diagram into a very small tree diagram within the disk by the Reidemeister moves I-V. See Fig. 2 for this transformation. Thus, we have a based diagram (D; X) of (G; T) only with crossings with over-under information.

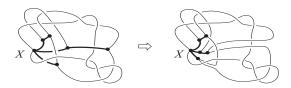


Figure 2: Transforming a diagram with a tree graph into a based diagram by shrinking the tree graph

The crossing number c(D) of a based diagram (D;X) is denoted by c(D;X). The crossing number c(G;T) of a based graph (G;T) is the minimal number of the crossing numbers c(D;X) of all based diagram (D;X) of (G;T). For a based diagram (D;X) of (G;T), let $N(X;D) = D \cap N(X;\mathbb{R}^2)$ be a regular neighborhood of X in the diagram D. Then the complement $\operatorname{cl}(D \setminus N(X;D))$ is a tangle diagram of m-strings a_i $(i=1,2,\ldots,m)$ in the disk $\Delta = S^2 \setminus N(X;\mathbb{R}^2)$ where $S^2 = \mathbb{R}^2 \cup \{\infty\}$ denotes the 2-sphere which is the one-point compactification of the plane \mathbb{R}^2 .

Let $\mathbb{Z}_2[D;X]$ be the \mathbb{Z}_2 vector space with the arcs a_i $(i=1,2,\ldots,m)$ as a \mathbb{Z}_2 -basis. For any two arcs a_i and a_j with $i \neq j$, the cross-index $\varepsilon(a_i,a_j)$ is defined to be 0 or 1 according to whether the two boundary points ∂a_j of the arc a_j are in one component of the two open arcs $\partial \Delta \setminus \partial a_i$ or not, respectively. For i=j, the identity $\varepsilon(a_i,a_j)=0$ is taken. Then the cross-index $\varepsilon(a_i,a_j)\pmod{2}$ defines the

symmetric bilinear \mathbb{Z}_2 -form

$$\varepsilon: \mathbb{Z}_2[D;X] \times \mathbb{Z}_2[D;X] \to \mathbb{Z}_2,$$

called the \mathbb{Z}_2 -form on (D; X). The genus g(D; X) of the based diagram (D; X) is defined to be half of the \mathbb{Z}_2 -rank of the \mathbb{Z}_2 -form $\varepsilon : \mathbb{Z}_2[D; X] \times \mathbb{Z}_2[D; X] \to \mathbb{Z}_2$, which is seen to be even since the \mathbb{Z}_2 -form ε is a \mathbb{Z}_2 -symplectic form.

The $genus\ g(G;T)$ of a based graph (G;T) is the minimum of the genus g(D;X) for all based diagrams (D;X) of (G;T). The following lemma shows that the genus g(G) of a graph G is calculable from based diagrams (D;X) of any based graph (G;T) of G.

Lemma 2.2.(Genus Lemma) g(G) = g(D; X) = g(G; T) for any based diagram (D; X) of any based graph (G, T).

Proof. Let (D; X) be a based diagram of a based graph (G; T) with g(D; X) = g(G; T). Constructs a compact connected orientable surface N(D; X) from (D; X) such that

- (1) the surface N(D; X) is a union of a disk N in \mathbb{R}^2 with the tree basis diagram X as a spine and attaching bands B_i (i = 1, 2, ..., m) whose cores are the edges a_i (i = 1, 2, ..., m) of D,
- (2) the \mathbb{Z}_2 -form $\varepsilon : \mathbb{Z}_2[D;X] \times \mathbb{Z}_2[D;X] \to \mathbb{Z}_2$ is isomorphic to the \mathbb{Z}_2 -intersection form on $H_1(N(D;X);\mathbb{Z}_2)$.

Because the nullity of the \mathbb{Z}_2 -intersection form on $H_1(N(D;X);\mathbb{Z}_2)$ is equal to the number of the boundary components of the bounded surface N(D;X) minus one, the genus g(N(D;X)) is equal to the half of the \mathbb{Z}_2 -rank of the \mathbb{Z}_2 -form ε . This implies that

$$q(G;T) = q(D;X) = q(N(D;X)) > q(G).$$

Conversely, let F be a compact connected orientable surface containing G with genus g(F)=g(G), where F need not be closed. For any based graph (G;T), let N(G) be a regular neighborhood of G in F, which is obtained from a disk N in F with the tree basis T as a spine by attaching bands B_i $(i=1,2,\ldots,m)$ whose cores are the edges a_i $(i=1,2,\ldots,m)$ of G. Then the inequality $g(N(G)) \leq g(F)$ holds. Let (D;X) be any based diagram of the based graph (G;T). Identify the disk N with a disk N(X) with the tree basis T as a spine. By construction, the \mathbb{Z}_2 -form $\varepsilon: \mathbb{Z}_2[D;X] \times \mathbb{Z}_2[D;X] \to \mathbb{Z}_2$ is isomorphic to the \mathbb{Z}_2 -intersection form on $H_1(N(G);\mathbb{Z}_2)$, which determines the genus g(N(G)) as the half of the \mathbb{Z}_2 -rank of ε . Thus, the inequalities

$$g(G;T) \le g(D;X) = g(N(G)) \le g(F) = g(G)$$

hold and we have g(G) = g(D;T) = g(G;T) for any based diagram (D;X) of (G;T).

The nullity $\nu(D;X)$ of (D;X) is the nullity of the \mathbb{Z}_2 -form $\varepsilon: \mathbb{Z}_2[D;X] \times \mathbb{Z}_2[D;X] \to \mathbb{Z}_2$. The nullity $\nu(G;T)$ of a based graph (G;T) is the maximum of the nullity $\nu(D;X)$ for all based diagrams (D;X) of (G;T). Then the following corollary is obtained:

Corollary 2.3. The identity $\nu(G;T) = 1 - \chi(G) - 2g(G)$ holds for any based graph (G,T).

This corollary shows that the nullity $\nu(G;T)$ is independent of a choice of tree bases T of G, and is therefore simply called the *nullity* of G and denoted by $\nu(G)$.

Proof. The graph G is obtained from the tree graph N(X;D) by attaching the mutually disjoint m-strings a_i ($i=1,2,\ldots,m$). Since the \mathbb{Z}_2 -rank of $\mathbb{Z}_2[D;X]$ is m by definition, we see from a calculation of the Euler characteristic $\chi(G)$ that $\chi(G) = 1 + m - 2m = 1 - m$. By the identity $m = 2g(D;X) + \nu(D;X)$ on the rank and the nullity of the \mathbb{Z}_2 -form ε , the nullity $\nu(D;X)$ of a based diagram (D;X) of (G;T) is given by $\nu(D;X) = m - 2g(D;X) = 1 - \chi(G) - 2g(D;X)$. Hence we have

$$\nu(G;T) = 1 - \chi(G) - 2g(G;T) = 1 - \chi(G) - 2g(G)$$

by Lemma 2.2. \Box

The *cross-index* of a based diagram (D;X) is the non-negative integer $\varepsilon(D;X)$ defined by

$$\varepsilon(D; X) = \sum_{1 \le i < j \le m} \varepsilon(a_i, a_j).$$

The following lemma is obtained:

Lemma 2.4. For every based diagram (D; X), the inequality $\varepsilon(D; X) \geq g(D; X)$ holds.

Proof. Let V be the \mathbb{Z}_2 -matrix representing the \mathbb{Z}_2 -form $\varepsilon: \mathbb{Z}_2[D;X] \times \mathbb{Z}_2[D;X] \to \mathbb{Z}_2$ with respect to the arc basis a_i $(i=1,2,\ldots,m)$. Let $\varepsilon_{ij}=\varepsilon(a_i,a_j)$ be the (i,j)-entry of the matrix V. The \mathbb{Z}_2 -rank r of the matrix V is equal to 2g(D;X) by definition. There are r column vectors in V that are \mathbb{Z}_2 -linearly independent. By changing the indexes of the arc basis a_i , we can find a sequence of integral pairs (i_k,j_k) $(k=1,2,\ldots,r)$ with $1\leq i_1< i_2\cdots < i_r\leq m$ and $1\leq j_1< j_2<\cdots < j_r\leq m$ such that $\varepsilon_{i_kj_k}=1$ for all k $(k=1,2,\ldots,r)$. Here, note that this sequence (i_k,j_k) $(k=1,2,\ldots,r)$ may contain two pairs (i_k,j_k) , $(i_{k'},j_{k'})$ with $k\neq k'$ and $(i_k,j_k)=(j_{k'},i_{k'})$. By the identities $\varepsilon_{ii}=0$ and $\varepsilon_{ij}=\varepsilon_{ji}$ for all i,j, we have

$$2\varepsilon(D;X) = \sum_{1 \le i,j \le m} \varepsilon_{ij} \ge \sum_{k=1}^r \varepsilon_{i_k j_k} = r = 2g(D;X).$$

Thus, the inequality $\varepsilon(D; X) \geq g(D; X)$ is obtained.

The cross-index $\varepsilon(G;T)$ of a based graph (G;T) is the minimum of the cross-index $\varepsilon(D;X)$ for all based diagrams (D;X) of (G;T). It may be used to compute

the crossing number c(G;T) of a based graph (G;T) as it is stated in the following lemma:

Lemma 2.5. (Calculation Lemma) $\varepsilon(G;T) = c(G;T)$ for every based graph (G;T).

Proof. Let a_i (i = 1, 2, ..., m) be an arc basis of a based diagram (D; X) of (G; T) attaching to the boundary of a regular neighborhood disk N of X in the plane.

By a homotopic deformation of a_i into an embedded arc a'_i keeping the boundary points fixed, we construct a new based diagram (D'; X) of (G; T) with a basis a'_i (i = 1, 2, ..., m) so that

- (1) $a'_i \cap a'_j = \emptyset$ if $\varepsilon(a_i, a_j) = 0$ and $i \neq j$,
- (2) a'_i and a'_j meet one point transversely if $\varepsilon(a_i, a_j) = 1$.

Then the cross-index $\varepsilon(D;X)$ is equal to the crossing number c(D';X) of the based diagram (D';X) of (G;T). Hence the inequality $\varepsilon(G;T) \geq c(G;T)$ is obtained. Since $\varepsilon(D;X) \leq c(D;X)$ for every based graph (D;X) of (G;T), the inequality $\varepsilon(G;T) \leq c(G;T)$ holds. Hence the identity $\varepsilon(G;T) = c(G;T)$ holds. \square

Calculation Lemma (Lemma 2.5) gives a computation method of the crossing number c(G;T) of a based graph (G;T) in a finite procedure.

In fact, let X_i (i = 1, 2, ..., s) be all the tree basis diagrams of T in \mathbb{R}^2 . For every i, let (D_{ij}, X_i) $(j = 1, 2, ..., t_i)$ be a finite set of based diagrams of (G, T) such that every based diagram (D, X_i) of (G, T) coincides with a based diagram (D_{ij}, X_i) for some j in a neighborhood of X_i . Then Calculation Lemma implies that the crossing number c(G; T) is equal to the minimum of the cross-indexes $\varepsilon(D_{ij}; X_i)$ for all i, j.

The following corollary is obtained by a combination of Lemmas 2.2, 2.5 and definition and some observation.

Corollary 2.6. The inequalities

$$\varepsilon(G;T) = c(G;T) \ge c(G) \ge g(G) = g(G;T)$$

hold for every based graph (G;T).

Proof. The identity $\varepsilon(G;T)=c(G;T)$ is given by Lemma 2.5. By definition, the inequality $c(G;T)\geq c(G)$ is given. To see that $c(G)\geq g(G)$, let D be a diagram of G with over-under information on the sphere S^2 with c(D)=c(G). Put an upper arc around every crossing of D on a tube attaching to S^2 to obtain a closed orientable surface of genus c(D) with G embedded (see Fig. 3).

Hence the inequality $c(G) \geq g(G)$ is obtained. The identity g(G) = g(G;T) is given by Lemma 2.2. (Incidentally, the inequality $c(G;T) \geq g(G;T)$ is directly obtained by Lemma 2.4.)

For an arbitrary tree T, the T-cross-index $c^T(G)$ of a connected graph G is the minimal number of c(G; T') for all tree bases T' of G such that T' is homeomorphic to T if such a tree basis T' of G exists. Otherwise, let $c^T(G) = \infty$. The T-cross-index $c^T(G)$ is a topological invariant of a graph G associated to every tree T, whose

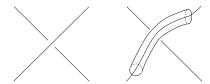


Figure 3: Put an upper arc on a tube

computation is in principle simpler than a computation of the crossing number c(G) by Calculation Lemma (Lemma 2.5).

Let $c^*(G)$ be the family of the invariants $c^T(G)$ of a connected graph G for all trees T. The minimal value $c^{\min}(G)$ in the family $c^*(G)$ has appeared as the crossing number of a Γ -unknotted graph in the paper [3] on a spatial graph.

The finite maximal value $c^{\max}(G)$ in the family $c^*(G)$ is a well-defined invariant of a connected graph G, because there are only finitely many tree bases T in G. By definition, we have the following inequalities

$$c^{\max}(G) \ge c^{\min}(G) \ge c(G) \ge g(G)$$

for every connected graph G. By definition, the following properties are mutually equivalent:

- (i) G is a planar graph.
- (ii) $c^{\max}(G) = 0$.
- (iii) $c^{\min}(G) = 0$.
- (iv) c(G) = 0.
- (v) g(G) = 0.

3. The Invariants of a Complete Graph

Let K_n be the *n*-complete graph. Let $n \geq 5$, because K_n is planar for $n \leq 4$. To consider a tree basis T of K_n , the following lemma is useful:

Lemma 3.1. For any two isomorphic tree bases T and T' of K_n , there is an automorphism of K_n sending T to T'. In particular, $c^T(K_n) = c(K_n; T)$ for every tree basis T of K_n .

Proof. Let K_n be the 1-skelton of the (n-1)-simplex $A = |v_0v_1...v_{n-1}|$. The isomorphism f from T to T' gives a permutation of the vertexes v_i (i=0,1,2,...,n-1) which is induced by a linear automorphism f_A of the (n-1)-simplex A. The restriction of f_A to the 1-skelton K_n of A is an automorphism of K_n sending T to T'.

A star-tree basis of K_n is a tree basis T^* of K_n which is homeomorphic to a cone of n-1 points to a single point. By Lemma 2.5 (Calculation Lemma), the crossing number $c(K_n; T^*)$ of the based graph $(K_n; T^*)$ is calculated as follows.

Lemma 3.2.
$$c(K_n; T^*) = \frac{(n-1)(n-2)(n-3)(n-4)}{24}$$
.

Proof. Let T_n^* denote the star-tree basis T^* of K_n in this proof. Since K_5 is non-planar, the computation $c(K_5; T_5^*) = 1$ is easily obtained (see Fig. 4). Suppose the calculation of $c(K_n; T_n^*)$ is done for $n \geq 5$. To consider $c(K_{n+1}; T_{n+1}^*)$, let the tree basis T_{n+1}^* be identified with the 1-skelton P^1 of the stellar division of a regular convex n-gon P (in the plane) at the origin v_0 . Let v_i (i = 1, 2, ..., n) be the linearly enumerated vertexes of P^1 in the boundary closed polygon ∂P of P in this order. We count the number of edges of $(K_{n+1}; T_{n+1}^*)$ added to $(K_n : T_n^*)$ contributing to the cross-index $\varepsilon(K_{n+1}; T_{n+1}^*)$. In the polygonal arcs of ∂P divided by the vertexes v_n, v_2 , the vertex v_1 and the vertexes v_3, \ldots, v_{n-1} construct pairs of edges contributing to the cross-index 1. In the polygonal arcs of ∂P divided by the vertexes v_n, v_3 , the vertexes v_1, v_2 and the vertexes v_4, \ldots, v_{n-1} construct pairs of edges contributing to the cross-index 1. Continue this process. As the final step, in the polygonal arcs of ∂P divided by the vertexes v_1, v_{n-2} , the vertexes $v_1, v_2, \ldots, v_{n-3}$ and the vertex v_{n-1} construct pairs of edges contributing to the cross-index 1. By Calculation Lemma, we have

$$c(K_{n+1}; T_{n+1}^*) - c(K_n; T_n^*) = 1(n-3) + 2(n-4) + \dots + (n-3)(n-(n-1))$$
$$= \sum_{k=1}^{n-3} k(n-2-k) = \frac{(n-1)(n-2)(n-3)}{6},$$

so that

$$c(K_{n+1}; T_{n+1}^*) = c(K_n; T_n^*) + \frac{(n-1)(n-2)(n-3)}{6}$$

$$= \frac{(n-1)(n-2)(n-3)(n-4)}{24} + \frac{(n-1)(n-2)(n-3)}{6}$$

$$= \frac{n(n-1)(n-2)(n-3)(n-4)}{24}.$$

Thus, the desired identity on $c(K_n; T^*) = c(K_n; T_n^*)$ is obtained.

For the crossing number $c(K_n)$, R. K. Guy's conjecture is known (see [2]):

Guy's Conjecture. $c(K_n) = Z(n)$ where

$$Z(n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor,$$

where \bigcup denotes the floor function.

¹Thanks to Y. Matsumoto for suggesting this calculation result.

Until now, this conjecture was confirmed to be true for $n \leq 12$. In fact, Guy confirmed that it is true for $n \leq 10$, and if it is true for any odd n, then it is also true for n + 1. S. Pan and P. B. Richter in [7] confirmed that it is true for n = 11, so that it is also true for n = 12. Thus,

$$c(K_n) = 1 \ (n = 5), \ 3 \ (n = 6), \ 9 \ (n = 7), \ 18 \ (n = 8), \ 36 \ (n = 9),$$

 $60 \ (n = 10), \ 100 \ (n = 11), \ 150 \ (n = 12).$

It is further known by D. McQuillana, S. Panb, R. B. Richterc in [6] that $c(K_{13})$ belongs to the set {219, 221, 223, 225} where 225 is the Guy's conjecture.

Given a tree basis diagram X of a tree basis T of K_n , we can construct a based diagram (D; X) of $(K_n; T)$ by Lemma 3.1, so that $c(K_n; T) \leq c(D; X)$.

To investigate $c^{\min}(K_5)$ and $c^{\max}(K_5)$, observe that the graph K_5 has just 3 non-isomorphic tree bases, namely a linear-tree basis T^L , a T-shaped-tree basis T^s and a star-tree basis T^* , where the T-shaped-tree basis T^s is a graph constructed by two linear three-vertex graphs ℓ and ℓ' by identifying the degree 2 vertex of ℓ with a degree one vertex of ℓ' . Since any of T^L, T^s, T^* is embedded in the planar diagram obtained from the diagram of K_5 in Fig. 4 by removing the two crossing edges, we have $c(K_5; T) \leq 1$ for every tree basis T of K_5 . Since $c(K_5; T) \geq c(K_5) = 1$,

$$c(K_5) = c^{\min}(K_5) = c^{\max}(K_5) = 1.$$

Figure 4: A based diagram of K_5 with a star-tree basis $T^* = T_5^*$

To investigate $c^{\min}(K_6)$ and $c^{\max}(K_6)$, observe that K_6 has just 6 non-isomorphic tree bases (see Fig. 5). In Appendix, it is shown how the non-isomorphic tree bases are tabulated in case of the complete graph K_{11} . For every tree basis T in Fig. 5, we can construct a based diagram (D;X) of (K_6,T) with $c(D;X) \leq 5$ by Lemma 3.1. Thus, by $c(K_6) = 3$ and $c(K_6;T^*) = 5$ and $c(K_6;T^L) \leq 3$ for a linear-tree basis T^L of K_6 (see Fig. 6), we have

$$c(K_6) = c^{\min}(K_6) = c(K_6; T^L) = 3 < c(K_6; T^*) = c^{\max}(K_6) = 5.$$

In particular, this means that $c^{\max}(G)$ is different from c(G) for a general connected graph G. It is observed in [2] that

$$c(K_n) \le \frac{1}{4} \cdot \frac{n}{2} \cdot \frac{n-1}{2} \cdot \frac{n-2}{2} \cdot \frac{n-3}{2} = \frac{n(n-1)(n-2)(n-3)}{64}.$$

More precisely, it is observed in [7] that

$$0.8594Z(n) \le c(K_n) \le Z(n).$$

By Lemma 3.2, we have

$$c^{\max}(K_n) \ge c(K_n; T^*) = \frac{(n-1)(n-2)(n-3)(n-4)}{24}.$$

Hence the difference $c^{\max}(K_n) - c(K_n)$ is estimated as follows:

$$c^{\max}(K_n) - c(K_n) \ge \frac{(n-1)(n-2)(n-3)(n-4)}{24} - \frac{n(n-1)(n-2)(n-3)}{64}$$
$$= \frac{(n-1)(n-2)(n-3)(5n-32)}{192}.$$

Hence we have

$$\lim_{n \to +\infty} (c^{\max}(K_n) - c(K_n)) = \lim_{n \to +\infty} c^{\max}(K_n) = +\infty.$$

As another estimation, we have

$$0 < \frac{c(K_n)}{c^{\max}(K_n)} \le \frac{24}{(n-1)(n-2)(n-3)(n-4)} \cdot \frac{n(n-1)(n-2)(n-3)}{64} = \frac{3}{8} \cdot \frac{n}{n-4},$$

so that for $n \ge 16$

$$0 < \frac{c(K_n)}{c^{\max}(K_n)} \le \frac{1}{2}.$$

Thus, we have the following lemma, which is used in § 4:

Lemma 3.3.

$$\lim_{n \to +\infty} (c^{\max}(K_n) - c(K_n)) = \lim_{n \to +\infty} c^{\max}(K_n) = +\infty,$$

$$0 < \frac{c(K_n)}{c^{\max}(K_n)} \le \frac{1}{2} \quad (n \ge 16).$$

Here is a question on a relationship between the crossing number and the minimally based crossing number.

Question (open). $c(G) = c^{min}(G)$ for every connected graph G?

The authors confirmed that

$$c(K_n) = c(K_n; T^L) = c^{\min}(K_n)$$

for $n \leq 12$, where T^L is a linear-tree basis of K_n . The diagrams with minimal cross-index for K_{11} and K_{12} are given in Fig. 7 and Fig. 8, respectively. It is noted that if

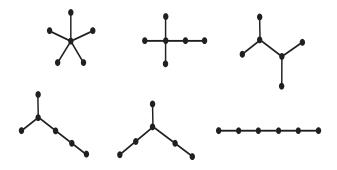


Figure 5: The tree bases of K_6

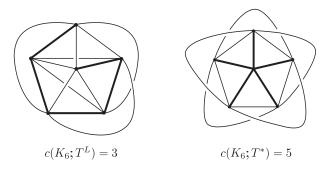


Figure 6: Based diagrams of K_6 with a linear-tree basis T^L and a star-tree basis T^*

this question is yes for K_{13} , then the crossing number $c(K_{13})$ would be computable with use of a computer. If this question is no, then the T-cross-index $c^T(G)$ would be more or less a new invariant for every tree T. Some related questions on the cross-index of K_n remain also open. Is there a linear-tree basis T^L in K_n with $c(K_n; T^L) = c^{\min}(K_n)$ for every $n \geq 13$? Furthermore, is the linear-tree basis T^L extendable to a Hamiltonian loop without crossing?

Quite recently, a research group of the second and third authors confirmed in [1] that

$$c(K_n; T^L) = Z(n)$$

for all n.

The genus $g(K_n)$ of K_n is known by G. Ringel and J. W. T. Youngs in [8] to be

$$g(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$$

= 1 (n = 5, 6, 7), 2(n = 8), 3 (n = 9), 4 (n = 10), 5 (n = 11), 6 (n = 12), ...,

where $\lceil \rceil$ denotes the ceiling function. Then the nullity $\nu(K_n)$ of K_n is computed

as follows:

$$\nu(K_n) = 1 - \chi(K_n) - 2g(K_n)
= (n-1)(n-2)/2 - 2 \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil
= 4 (n=5), 8 (n=6), 13 (n=7), 17 (n=8), 22 (n=9), 28 (n=10), 35 (n=11), 43 (n=12),$$

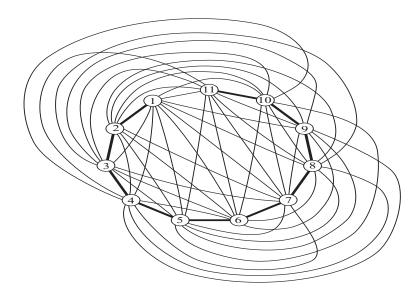


Figure 7: A diagram of K_{11} with minimal cross-index 100

4. Independence of the Cross-index

In this section, we show that the invariant $c^*(G)$ is more or less a new invariant. For this purpose, for a real-valued invariant I(G) of a connected graph G which is not bounded when G goes over the range of all connected graphs, a virtualized invariant $\tilde{I}(G)$ of G is defined to be $\tilde{I}(G) = f(I(G))$ for a fixed non-constant real polynomial f(x) in x. Every time a different non-constant polynomial f(t) is given, a different virtualized invariant $\tilde{I}(G)$ is obtained from the invariant I(G). The following theorem is the main result of this paper showing a certain independence between the cross-index $c^*(G)$ and the other invariants $c(G), g(G), \chi(G)$.

Theorem 4.1. Let $\tilde{c}^{max}(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ be any virtualized invariants of the invariants $c^{max}(G), c(G), g(G), \chi(G)$, respectively. Every linear combination of the invariants $\tilde{c}^{max}(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ in real coefficients including a non-zero number is not bounded when G goes over the range of all connected graphs.

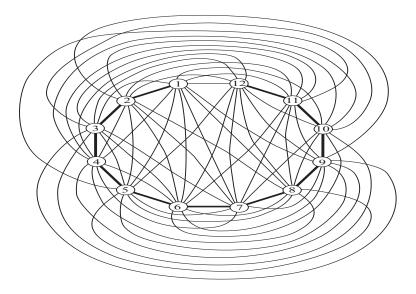


Figure 8: A diagram of K_{12} with minimal cross-index 150

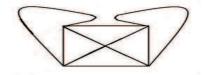


Figure 9: The planar diagram D_5^0

Let $N(v_G)$ be the regular neighborhood of the vertex set v_G in G. A connected graph G is vertex-congruent to a connected graph G' if there is a homeomorphism $N(v_G) \cong N(v_{G'})$. Then we have the same Euler characteristic: $\chi(G) = \chi(G')$. To show this theorem, the following lemma is used.

Lemma 4.2

(1) For every n > 1, there are vertex-congruent connected graphs G^i (i = 0, 1, 2, ..., n) such that

$$c^{\max}(G^i) = c(G^i) = g(G^i) = i$$

for all i.

(2) For every n > 1, there are connected graphs H^i (i = 1, 2, ..., n) such that

$$c^{max}(H^i) = c(H^i) = i$$
 and $g(H^i) = 1$

for all i.

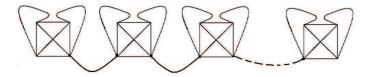


Figure 10: The planar diagram G^0

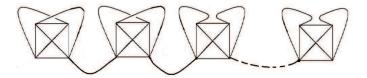


Figure 11: The graph G^2

Proof. Use the based diagram $(D_5; X)$ of K_5 in Fig. 4 with $c(D_5; X) = c(K_5; T^*) = g(K_5) = 1$. Let D_5^0 be the planar diagram without crossing by obtained from D_5 by smoothing the crossing, illustrated in Fig. 9. Let K_5^0 be the planar graph given by D_5^0 . For the proof of (1), let G^0 be the connected graph obtained from the n copies of K_5^0 by joining n-1 edges one after another linearly by introducing them (see Fig. 10).

Let G^i $(i=1,2,\ldots,n)$ be the connected graphs obtained from G^0 by replacing the first i copies of K_5^0 with the i copies of K_5 (see Fig. 11 for i=2). Since $c(K_5;T)=1$ for every tree basis T and every tree basis T^i of G^i is obtained from the i tree bases of K_5 and the n-i tree bases of K_5^0 by joining the n-1 edges one after another linearly. Then $g(G^i) \leq c^{T^i}(G^i) \leq i$ for every i. By Genus Lemma and Calculation Lemma, we obtain $g(G^i) = g(G^i; T^i) \geq i$ so that

$$g(G^i) = c(G^i) = c^{\max}(G^i) = i$$

for all i, showing (1). For (2), let H^i be the graph obtained from K_5 by replacing every edge except one edge by i multiple edges with $|v_{H^i}| = |v_{K_5}| = 5$. Then $g(H^i) = g(K_5) = 1$. Note that every tree basis T of H^i is homeomorphic to a tree basis of K_5 . Then the identity $c^{\max}(K_5) = 1$ implies $c^{\max}(H^i) \leq i$. Since H^i contains i distinct K_5 -graphs with completely distinct edges except common one edge. Then we have $c(H^i) \geq i$ and hence

$$c^{\max}(H^i) = c(H^i) = i \quad \text{and} \quad g(H^i) = 1$$

for all i.

By using Lemma 4.2, the proof of Theorem 4.1 is given as follows:

Proof of Theorem 4.1. Let

$$\tilde{c}^{\max}(G) = f_1(c^{\max}(G)),$$

$$\tilde{c}(G) = f_2(c(G)),$$

$$\tilde{g}(G) = f_3(g(G)),$$

$$\tilde{\chi}(G) = f_4(\chi(G))$$

for non-constant real polynomials $f_i(x)$ (i = 1, 2, 3, 4). Suppose that the absolute value of a linear combination

$$a_1\tilde{c}^{\max}(G) + a_2\tilde{c}(G) + a_3\tilde{g}(G) + a_4\tilde{\chi}(G)$$

with real coefficients a_i (i=1,2,3,4) is smaller than or equal to a positive constant a for all connected graphs G. Then it is sufficient to show that $a_1=a_2=a_3=a_4=0$. If G is taken to be a planar graph, then $c^{\max}(G)=c(G)=g(G)=0$. There is an infinite family of connected planar graphs whose Euler characteristic family is not bounded. Hence the polynomial $a_4f_4(x)$ is a constant polynomial in x. Since $f_4(x)$ is a non-constant polynomial in x, we must have $a_4=0$. Then the inequality

$$|a_1\tilde{c}^{\max}(G) + a_2\tilde{c}(G) + a_3\tilde{g}(G)| \le a$$

holds. By Lemma 4.2 (1), the polynomial $a_1f_1(x) + a_2f_2(x) + a_3f_3(x)$ in x must be a constant polynomial. By Lemma 4.2 (2), the polynomial $a_1f_1(x) + a_2f_2(x)$ in x must be a constant polynomial. These two claims mean that the polynomial $a_3f_3(x)$ is a constant polynomial in x, so that $a_3 = 0$ since $f_3(x)$ is a non-constant polynomial. Let $a' = a_1f_1(x) + a_2f_2(x)$ which is a constant polynomial in x. Then

$$a_1 \tilde{c}^{\max}(G) + a_2 \tilde{c}(G) = a_1 (f_1(c^{\max}(G)) - f_1(c(G)) + a',$$

so that

$$|a_1(f_1(c^{\max}(G)) - f_1(c(G)) + a'| \le a$$

for all connected graphs G. By Lemma 3.3, we have

$$\lim_{n \to +\infty} (c^{\max}(K_n) - c(K_n)) = \lim_{n \to +\infty} c^{\max}(K_n) = +\infty,$$

$$0 < \frac{c(K_n)}{c^{\max}(K_n)} \le \frac{1}{2} \quad (n \ge 16).$$

Let d and e be the highest degree and the highest degree coefficient of the polynomial $f_1(t)$. Then we have

$$\lim_{n \to +\infty} |f_1(c^{\max}(K_n)) - f_1(c(K_n))|$$

$$= \lim_{n \to +\infty} \left| ec^{\max}(K_n)^d \left(1 - \left(\frac{c(K_n)}{c^{\max}(K_n)} \right)^d \right) \right| = +\infty.$$

Thus, we must have $a_1 = 0$, so that $a_1 = a_2 = a_3 = a_4 = 0$.

5. Appendix: Tabulation of the Tree Bases of K_{11}

In this appendix, it is shown how the non-isomorphic tree bases are tabulated in case of the complete graph K_{11} . This tabulation method is important to compute the T-cross index $c^T(K_n)$ for a tree basis T of K_n , which is equal to the cross-index $c(K_n; T)$ by Lemma 3.1.

Our tabulation method is based on a formula on the numbers of vertexes with respect to degrees. Let T be a tree on the 2-sphere, and v_i the number of vertexes of T of degree i. Then the number V of the vertexes of T is the sum of all v_i s for i = 1, 2, ...;

$$V = v_1 + v_2 + \dots + v_i + \dots$$

Since there are i edges around every vertex of degree i and each edge has two end points, the total number E of edges of T is as follows:

$$E = \frac{1}{2} (v_1 + 2v_2 + 3v_3 + \dots + iv_i + \dots).$$

Since T is a tree, the number F of faces of T is 1. Then the following formula is obtained from the Euler characteristic of the 2-sphere V - E + F = 2:

$$(5.1) v_1 = 2 + v_3 + 2v_4 + \dots + (i-2)v_i + \dots$$

Let V = 11, i.e., let T be a tree basis of K_{11} . Since E = 10 by the Euler characteristic, the following equality holds:

(5.2)
$$\frac{1}{2}(v_1 + 2v_2 + 3v_3 + \dots + 10v_{10}) = 10.$$

From the equalities (5.1) and (5.2), the following formula is obtained:

$$(5.3) v_2 + 2v_3 + 3v_4 + \dots + (i-1)v_i + \dots + 9v_{10} = 9.$$

In Table 1, all the possible combinations of v_i s which satisfy V=11 and the formula (5.3) are listed. In Fig. 12, all the graphs in Table 1 are shown, where degree-two vertexes are omitted for simplicity. By giving vertexes with degree two to each graph in Fig. 12, all the tree bases of K_{11} are obtained as shown in Figs. 13, 14, 15 and 16.

References

[1] Y. Gokan, H. Katsumata, K. Nakajima, A. Shimizu and Y. Yaguchi, A note on the cross-index of a complete graph based on a linear tree, J. Knot Theory Ramifications, 27(2018), 1843010, 24 pp.

- [2] R. K. Guy, Crossing numbers of graphs, Graph Theory and Applications, 111-124, Lecture Notes in Math. 303, Springer, Berlin, 1972.
- [3] A. Kawauchi, On transforming a spatial graph into a plane graph, Progress Theor. Phys. Suppl., 191(2011), 225–234.
- [4] A. Kawauchi, Knot theory for spatial graphs attached to a surface, Knot Theory and its Applications, 141–169, Contemp. Math. 670, Amer. Math. Soc., Providence, RI, 2016
- [5] A. Kawauchi, Complexities of a knitting pattern, Reactive and Functional Polymers, 131(2018), 230–236.
- [6] D. McQuillan, S. Pan and R. B. Richter, On the crossing number of K_{13} , J. Comb. Theory, Ser. B, 115(2015), 224-235.
- [7] S. Pan and P. B. Richter, The Crossing number of K_{11} is 100, J. Graph Theory, $\mathbf{56}(2007)$, 128-134.
- [8] G. Ringel and J. W. T. Youngs, Solution of the Heawood Map-Coloring Problem, Proc. Nat. Acad. Sci. USA, 60(1968), 438–445.

case	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}
A	10	0	0	0	0	0	0	0	0	1
В	9	1	0	0	0	0	0	0	1	0
С	8	2	0	0	0	0	0	1	0	0
D	9	0	1	0	0	0	0	1	0	0
E	7	3	0	0	0	0	1	0	0	0
F	8	1	1	0	0	0	1	0	0	0
G	9	0	0	1	0	0	1	0	0	0
Н	9	0	0	0	1	1	0	0	0	0
I	8	1	0	1	0	1	0	0	0	0
J	8	0	2	0	0	1	0	0	0	0
K	7	2	1	0	0	1	0	0	0	0
L	6	4	0	0	0	1	0	0	0	0
M	8	1	0	0	2	0	0	0	0	0
N	8	0	1	1	1	0	0	0	0	0
О	7	2	0	1	1	0	0	0	0	0
P	7	1	2	0	1	0	0	0	0	0
Q	6	3	1	0	1	0	0	0	0	0
R	5	5	0	0	1	0	0	0	0	0
S	8	0	0	3	0	0	0	0	0	0
T	7	1	1	2	0	0	0	0	0	0
U	6	3	0	2	0	0	0	0	0	0
V	7	0	3	1	0	0	0	0	0	0
W	6	2	2	1	0	0	0	0	0	0
X	5	4	1	1	0	0	0	0	0	0
Y	4	6	0	1	0	0	0	0	0	0
Z	6	1	4	0	0	0	0	0	0	0
α	5	3	3	0	0	0	0	0	0	0
β	4	5	2	0	0	0	0	0	0	0
$\frac{\gamma}{\delta}$	3	7	1	0	0	0	0	0	0	0
δ	2	9	0	0	0	0	0	0	0	0

Table 1:

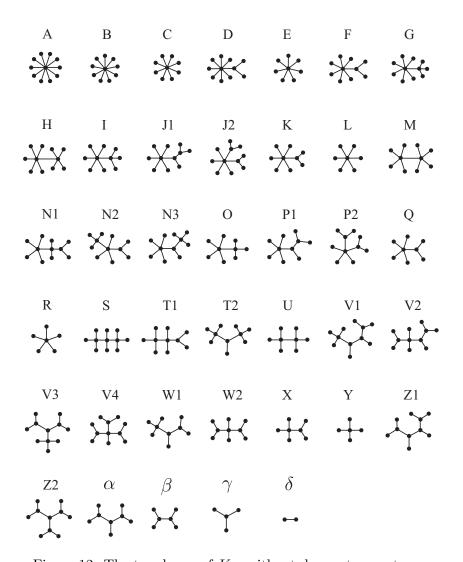


Figure 12: The tree bases of K_{11} without degree-two vertexes.

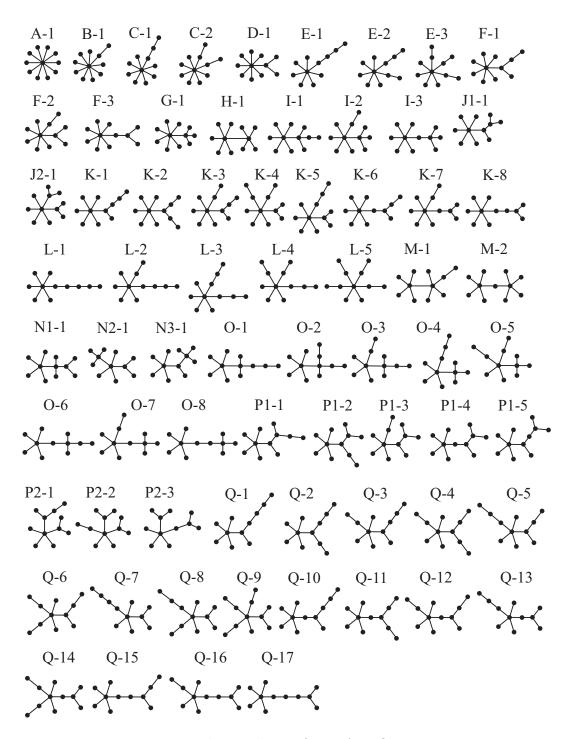


Figure 13: The tree bases of type A to Q.

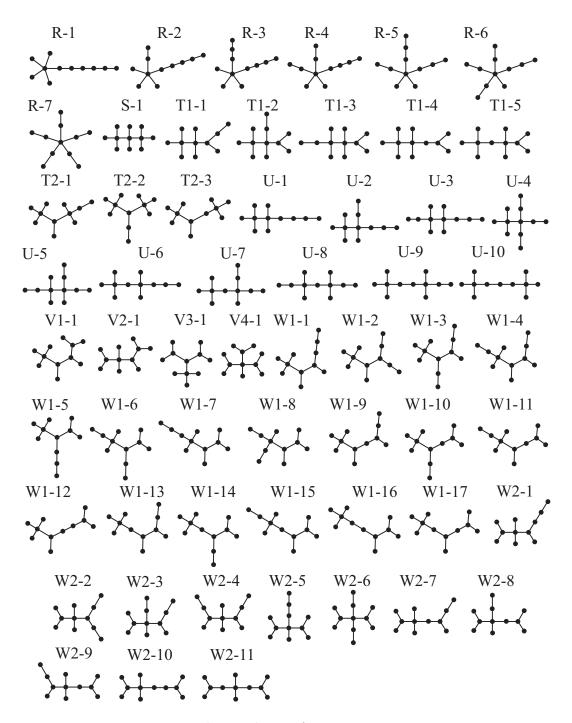


Figure 14: The tree bases of type R to W.

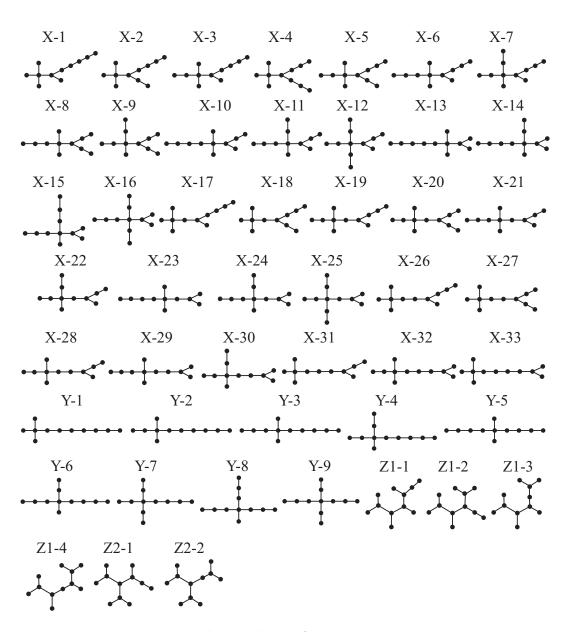


Figure 15: The tree bases of type X to Z.

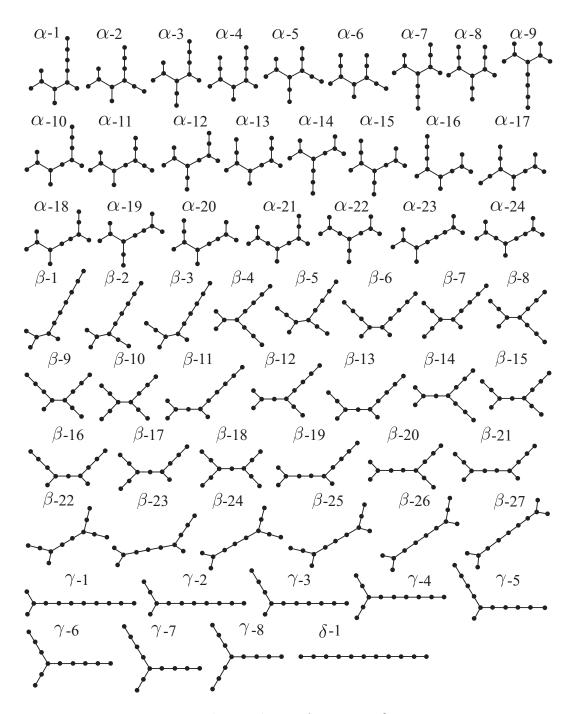


Figure 16: The tree bases of type α to δ .