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Abstract. A term is called linear if each variable which occurs in the term, occurs only

once. A hypersubstitution is said to be linear if it maps any operation symbol to a linear

term of the same arity. Linear hypersubstitutions have some importance in Theoretical

Computer Science since they preserve recognizability [7]. We show that the collection of

all linear hypersubstitutions forms a monoid. Linear hypersubstitutions are used to define

linear hyperidentities. The set of all linear term operations of a given algebra forms with

respect to certain superposition operations a function algebra. Hypersubstitutions define

endomorphisms on this function algebra.

1. Introduction

The concept of a term is one of the fundamental concepts of algebra. To define
terms one needs variables and operation symbols. Let (fi)i∈I be an indexed set of
operation symbols. To every operation symbol fi there belongs an integer ni as its
arity. The type of the formal language of terms is the indexed set τ = (ni)i∈I of these
arities. Moreover, one needs variables from an alphabet X. Let Xn := {x1, . . . , xn}
be a finite alphabet and let X := {x1, . . . , xn, . . .} be countably infinite. Then n-ary
terms of type τ are defined as follows:
Let n ≥ 1.

(i) Every variable xj ∈ Xn is an n-ary term (of type τ).

(ii) If t1, . . . , tni
are n-ary terms and if fi is an ni-ary operation symbol, then

fi(t1, . . . , tni
) is an n-ary term (of type τ).

(iii) The setWτ (Xn) of all n-ary terms is the smallest set which contains x1, . . . , xn
and is closed under finite application of (ii).
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The set of all terms of type τ over the countably infinite alphabet X is defined
by Wτ (X) :=

⋃
n≥1

Wτ (Xn).

On the set Wτ (X) of all terms of type τ an algebra Fτ (X) of type τ can be
defined if we consider the operation symbols fi as ni-ary operations f̄i : Wτ (X)ni →
Wτ (X) with (t1, . . . , tni

) 7→ f̄i(t1, . . . , tni
) := fi(t1, . . . , tni

). This is possible by (ii)
of the definition of terms. Then the pair F(X) := (Wτ (X); (f̄i)i∈I) is an algebra of
type τ which is free with respect to the class Alg(τ) of all algebras of type τ , freely
generated by X in the sense that for every algebra A ∈ Alg(τ) any mapping ϕ : X →
A can be extended to a homomorphism ϕ̄ : Fτ (X) → A with A = (A; (fAi )i∈I).
Here fAi : Ani → A are the ni-ary operations defined on A which correspond to the
operation symbols fi.

A term in which each variable occurs at most once, is said to be linear. For a
formal definition of n-ary linear terms we replace (ii) in the definition of terms by
a slightly different condition.

Definition 1.1. An n-ary linear term of type τ is defined in the following inductive
way:

(i) xj ∈ Xn is for any j ∈ {1, . . . , n} an n-ary linear term (of type τ).

(ii) If t1, . . . , tni
are n-ary linear terms and if var(tj) ∩ var(tk) = ∅ for all 1 ≤

j < k ≤ ni, then fi(t1 . . . , tni
) is an n-ary linear term.

(iii) The set W lin
τ (Xn) of all n-ary linear terms is the smallest set which contains

x1, . . . , xn and is closed under finite application of (ii).

The set of all linear terms of type τ over the countably infinite alphabet X is
defined by W lin

τ (X) :=
⋃
n≥1

W lin
τ (Xn).

The set W lin
τ (X) is not closed under application of the f̄i’s since fi(t1, . . . , tni

)
needs not to be linear if t1, . . . , tni

are linear. But, if we define to every fi a partial

operation f̂i on W lin
τ (X) by

f̂i(t1, . . . , fni
) :=

 fi(t1, . . . , fni
) if var(tj) ∩ var(tk) = ∅ for all

1 ≤ j < k ≤ ni,
not defined, otherwise,

then Flinτ (X) := (W lin
τ (X); (f̂i)ı∈I) is a partial algebra of type τ . The domain of

f̂i consists of all ni-tuples (t1, . . . , tni) satisfying the condition var(tj) ∩ var(tk) =
∅, 1 ≤ j < k ≤ ni.

Let PAlg(τ) be the class of all partial algebras of type τ . If A,B ∈ PAlg(τ),
then a mapping h̄ : A → B is called a homomorphism from A to B if for all i ∈ I

Here var(tj) is the set of all variables occurring in tj .
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the following is satisfied:
if (a1, . . . , ani

) ∈ domfAi , then (h̄(a1), . . . , h̄(ani
)) ∈ domfBi , and then

h̄(fAi (a1, . . . ani
)) = fBi (h̄(a1), . . . , h̄(ani

)).

(Here domfAi is the domain of the function fAi ). It is easy to see that Flinτ (X) is
a free algebra w.r.t. PAlg(τ), freely generated by X, i.e. that for all A ∈ PAlg(τ)
any mapping h : X → A can be extended to a homomorphism h̄.

The setWτ (X) of all terms of type τ is closed under composition, i.e. if t1, . . . , tn
are m-ary terms of type τ and if fi(s1, . . . , sni

) is an n-ary term of type τ , then the
term

fi(s1(t1, . . . , tn), . . . , sni
(t1, . . . , tn))

obtained by replacing the variables x1, . . . , xn occurring in s1, . . . sni
by the terms

t1, . . . , tni
is a new m-ary term of type τ . This is not true for linear terms.

Pairs of linear terms are said to be linear equations and if a linear equation
is satisfied in an algebra or in a variety of algebras we speak of a linear identity.
Linear identities are studied in many papers, see e.g. [1, 3, 9]. Let

Linτ (X) := {s ≈ t | s, t ∈W lin
τ (X)} = W lin

τ (X)×W lin
τ (X) = (W lin

τ (X))2

be the set of all linear equations of type τ . It is well-known that the set (Wτ (X))2

of all equations of type τ forms a fully invariant congruence relation on the term
algebra Fτ (X).

Theorem 1.2. Linτ (X) is a congruence on the partial linear term algebra

Flinτ (X) = (W lin
τ (X); (f̂i)i∈I).

Proof. Clearly, Lin(τ) is reflexive, symmetric and transitive. Assume that s1 ≈
t1, . . . , sni

≈ tni
∈ Lin(τ), that (s1, . . . , sni

) ∈ domf̂i, i.e. var(sj)∩var(sk) = ∅, for

all j, k ∈ {1, . . . , ni}, j 6= k and that (t1, . . . , tni
) ∈ domf̂i, i.e. var(tj)∩var(tk) = ∅,

for all j, k ∈ {1, . . . , ni}, j 6= k. Then f̂i(s1, . . . , sni) = fi(s1, . . . , sni) and

f̂i(t1, . . . , tni
) = fi(t1, . . . , tni

). Then from fi(s1, . . . , sni
) ≈ fi(t1, . . . , tni

) ∈
Wτ (X)2 (since Wτ (X) is a congruence on Fτ (X)) there follows f̂i(s1, . . . , sni

) ≈
f̂i(t1, . . . , tni

) ∈ Linτ (X). 2

Since linearity of the terms on the left-hand side and the right-hand side of a
linear identity can get lost under substitution, Lin(τ) is not fully invariant.

We consider the following example. Let τ = (2) with the binary operation sym-
bol f . Then W lin

(2) (X2) = {x1, x2, f(x1, x2), f(x2, x1)} and thus

Lin(2)(X2) = {x1 ≈ x1, x1 ≈ x2, x1 ≈ f(x1, x2), x1 ≈ f(x2, x1), x2 ≈ x1, x2 ≈
x2, x2 ≈ f(x1, x2), x2 ≈ f(x2, x1), f(x1, x2) ≈ x1, f(x1, x2) ≈ x2, f(x1, x2) ≈
f(x1, x2), f(x1, x2) ≈ f(x2, x1), f(x2, x1) ≈ x1, f(x2, x1) ≈ x2, f(x2, x1) ≈
f(x1, x2), f(x2, x1) ≈ f(x2, x1)}.
Substituting in x1 ≈ f(x1, x2) for x1 the linear term f(x2, x1) we get f(x2, x1) ≈
f(f(x2, x1), x2) 6∈ Lin(2)(X2).



620 T. Changphas, B. Pibaljommee and K. Denecke

We recall that s ≈ t is satisfied as an identity in the algebra A = (A; (fAi )i∈I)
of type τ if sA = tA, i.e. if the induced term operations are equal. In this case we
write A |= s ≈ t. Let V be a variety of type τ , i.e. a model class of a set Σ of
equations:

V = ModΣ = {A ∈ Alg(τ) | ∀s ≈ t ∈ Σ(A |= s ≈ t)}.

Definition 1.3. A variety V is said to be linear, if there is a set Σ ⊆ Linτ (X) of
linear equations of type τ such that V = ModΣ.

Let Idlin(V ) be the set of all linear identities in V . Using the fact that IdV is
a fully invariant congruence on the term algebra Fτ (X), in a similar way as in the
proof of Theorem 1.2 we show that Idlin(V ) is a congruence on the partial linear
term algebra Flinτ (X). This fact gives a derivation concept for linear identities,
similar to the derivation concept of identities and allows us to consider and to
study a linear equational logic. Not every identity of a linear variety is linear. This
means that by using the usual derivation concept of Universal Algebra from linear
identities also non-linear identities can be derived.

For example, M = Mod{x1(x2x3) ≈ (x1x2)x3, x1x2x3x4 ≈ x1x3x2x4}, the
variety of medial semigroups, is linear, x2

1x2x3x4 ≈ x2
1x3x2x4 is an identity in M ,

but not linear.
For the basic concepts on Universal Algebra see [5] and for partial algebras see

[2].

2. Linear Hypersubstitutions and Linear Hyperidentities

A mapping σ : {fi | i ∈ I} →Wτ (X) which maps every ni-ary operation symbol
fi to an ni-ary term of type τ is said to be a hypersubstitution (of type τ). The
extension σ̂ : Wτ (X)→Wτ (X) is defined inductively by

(i) σ̂[x] := x for any variable x ∈ X and

(ii) σ̂[fi(t1, . . . , tni
)] = σ(fi)(σ̂[t1], . . . , σ̂[tni

]) assumed that the results σ̂[tj ], 1 ≤
j ≤ ni, are already defined. Here the right-hand side means the superposition
of terms.

Then a product σ1 ◦h σ2 := σ̂1 ◦ σ2 can be defined and the set Hyp(τ) of all
hypersubstitutions of type τ becomes a monoid. Hypersubstitutions can be applied
to identities and to algebras of type τ . Let A = (A; (fAi )i∈I) be an algebra of type
τ . Then the identity s ≈ t is said to be a hyperidentity satisfied in A, if σ̂[s] ≈ σ̂[t]
are satisfied as identities in A for all σ ∈ Hyp(τ). We write A |= s ≈ t if s ≈ t is
satisfied as an identity in A and A |=hyp s ≈ t if s ≈ t is satisfied as a hyperidentity
in A. The algebra σ[A] := (A; (σ(fi))

A
i∈I) is said to be derived from A by σ. There

holds
A |= σ̂[s] ≈ σ̂[t]⇔ σ(A) |= s ≈ t.

(This equivalence is called the ‘conjugate property’). For more information on
hyperidentities and hypersubstitutions see e.g. [5, 6, 8].
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Now we consider hypersubstitutions mapping the operation symbols to linear
terms.

Definition 2.1. A linear hypersubstitution of type τ is a hypersubstitution

σ : {fi | i ∈ I} →W lin
τ (X).

Let Hyplin(τ) be the set of all linear hypersubstitutions of type τ .

Example 2.2. Let τ = (2) with the binary operation symbol f . Since
W(2)(X2) = {x1, x2, f(x1, x2), f(x2, x1)} is the set of all binary linear terms of

type (2), Hyplin(2) consists of four hypersubstitutions which can be written as
σx1

, σx2
, σf(x1,x2) and σf(x2,x1). If we apply the multiplication ◦h on this set, we

obtain a monoid where the operation ◦h can be described by the following table:

◦h σf(x1,x2) σf(x2,x1) σx1 σx2

σf(x1,x2) σf(x1,x2) σf(x2,x1) σx1
σx2

σf(x2,x1) σf(x2,x1) σf(x1,x2) σx1
σx2

σx1 σx1 σx2 σx1 σx2

σx2
σx2

σx1
σx1

σx2
.

Here σf(x1,x2) is the identity element of the monoid (Hyplin(2); ◦h, σid).

In the general case it is not clear whether or not the extension σ̂ of a linear
hypersubstitution maps linear terms to linear terms and then it is also not clear
whether or not the linear hypersubstitutions form a monoid. The first fact is well-
known (see e. g. [5]).

Lemma 2.3. For any hypersubstitution σ and any term t we have

var(t) ⊇ var(σ̂[t]).

Proof. We give a proof by induction on the complexity of t. If t = xi ∈ X is a
variable, then

var(t) = var(xi) = {xi} = var(σ̂[xi]).

Assume that t = fi(t1, . . . , tni
) and that var(tj) ⊇ var(σ̂[tj ]), j = 1, . . . , ni. Then

var(t) =
ni⋃
j=1

var(tj) ⊇
ni⋃
j=1

var(σ̂[tj ])

⊇ var(σ(fi)(σ̂[t1], . . . , σ̂[tni
])) = var(σ̂[t])

by properties of the superposition of terms. 2

Then we obtain:

Lemma 2.4. For any linear term t = fi(t1, . . . , tni) and any linear hypersubstitu-
tion σ we get

var(σ̂[tj ]) ∩ var(σ̂[tk]) = ∅
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for all 1 ≤ j < k ≤ ni.
Proof. The previous lemma gives var(tl) ⊇ var(σ̂[tl]) for any 1 ≤ l ≤ ni and thus

∅ = var(tj) ∩ var(tk) ⊇ var(σ̂[tj ]) ∩ var(σ̂[tk]) = ∅. 2

Lemma 2.5. The extension of a linear hypersubstitution maps linear terms to
linear terms.

Proof. Let t ∈ W lin
τ (X) and let σ ∈ Hyplin(τ). If t = xi, then σ̂[xi] = xi

is linear. Otherwise, i.e. if t = fi(t1, . . . , tni), by the previous lemma we have
var(σ̂[tj ]) ∩ var(σ̂[tk]) = ∅ for all 1 ≤ j < k ≤ ni. Inductively we may assume that
σ̂[t1], . . . , σ̂[tni

] are linear. Altogether, σ̂[t] = σ(fi)(σ̂[t1], . . . , σ̂[tni
]) is linear. 2

One more consequence is

Theorem 2.6. (Hyplin(τ); ◦h, σid) is a submonoid of (Hyp(τ); ◦h, σid).

Proof. If σ1, σ2 ∈ Hyplin(τ), we have to show that σ1 ◦h σ2 ∈ Hyplin(τ). Indeed,
(σ1 ◦h σ2)(fi) = σ̂1[σ2(fi)]. Since σ2(fi) is linear and since σ1 is linear, by the
previous lemma σ̂1[σ2(fi)] is linear. The identity hypersubstitution σid is linear
since σid(fi) = fi(x1, . . . xni) is linear. 2

Now we will give two more examples of linear hypersubstitions.

Example 2.7. Let τ = (4, 2) be the type with a quaternary operation symbol g
and a binary operation symbol f . Let σ be the hypersubstitution which maps g to
f(f(x1, x3), f(x2, x4)) and f to f(x1, x2). Then σ ∈ Hyplin(4, 2).

Example 2.8. Let τ = (4, 2, 1) be the type with a quaternary operation symbol
g, a binary operation symbol f and a unary operation symbol h and let σ be the
hypersubstitution which maps g to f(f(x1, x3), h(x4)), which maps f to f(x1, x2)
and h to h(x1). Obviously, σ ∈ Hyplin(4, 2, 1).

The second example shows that there are linear hypersubstitutions which map
ni-ary operation symbols to terms, which do not use all variables from {x1, . . . , xni}.

As for an arbitrary mapping also for the extension of a hypersubstitution one
may consider the kernel of this mapping (see e.g. [8]). In particular, by Lemma
2.4, this can be done for a linear hypersubstitution σ since its extension σ̂ maps
W lin
τ (X) to W lin

τ (X).

Definition 2.9. Let σ ∈ Hyplin(τ). Then for s, t ∈W lin
τ (X)

Kerσ := {(s, t) | σ̂[s] = σ̂[t]}

is said to be the kernel of the linear hypersubstitution σ.

For σ ∈ Hyp(τ) the kernelKerσ is a fully invariant congruence on the absolutely
free algebra Fτ (X) = (Wτ (X); (f̄i)i∈I). For linear hypersubstitutions we get

Proposition 2.10. Let σ ∈ Hyplin(τ). Then Kerσ is a congruence on the partial

algebra Flinτ (X) = (W lin
τ (X); (f̂i)i∈I).
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Proof. Kerσ is clearly an equivalence relation on W lin
τ (X). For i ∈ I let (s1, t1) ∈

Kerσ, . . . , (sni
, tni

) ∈ Kerσ and thus

σ̂[s1] = σ̂[t1], . . . , σ̂[sni
] = σ̂[tni

]. (∗)

Assume that f̂i(s1, . . . , sni
) and f̂i(t1, . . . , tni

) exist. Then

f̂i(s1, . . . , sni) = fi(s1, . . . , sni) and f̂i(t1, . . . , tni) = fi(t1, . . . , tni) (∗∗)

and by Lemma 2.3, var(σ̂[sj ]) ∩ var(σ̂[sk]) = ∅ and var(σ̂[tj ]) ∩ var(σ̂[tk]) = ∅ for
all 1 ≤ j < k ≤ ni. Applying the linear term σ(fi) on (∗) we obtain

σ(fi)(σ̂[s1], . . . , σ̂[sni
]) = σ(fi)(σ̂[t1], . . . , σ̂[tni

]).

Both sides of this equation are linear terms and by the definition of the extension
and we obtain

σ̂[fi(s1, . . . , sni)] = σ̂[fi(t1, . . . , tni)].

By (∗∗) we have

σ̂[f̂i(s1, . . . , sni
)] = σ̂[f̂i(t1, . . . , tni

)]

and then

(f̂i(s1, . . . , sni), f̂i(t1, . . . , tni)) ∈ Kerσ. 2

We remark that Theorem 2.6 has important consequences. Let M be an arbi-
trary submonoid of Hyp(τ) with the universe M . A variety V of algebras of type τ
is said to be M -solid if for every s ≈ t ∈ IdV and every σ ∈ M, σ̂[s] ≈ σ̂[t] ∈ IdV .
The collection of all M -solid varieties of type τ forms a complete sublattice of the
lattice of all varieties of type τ . Since the set of all linear identities of a variety V is
not closed under substitution of terms, i.e. is not an equational theory, we cannot
apply the general theory of M -hyperidentities and M -solid varieties. Therefore, not
all of our next definitions follow the general theory.

Definition 2.11. Let A be an algebra and let K be a class of algebras, both of type
τ . A linear identity s ≈ t is said to be a linear hyperidentity in A (respectively, in
K) if σ̂[s] ≈ σ̂[t] ∈ IdA (respectively, σ̂[s] ≈ σ̂[t] ∈ IdK) for every σ ∈ Hyplin(τ).
In this case we write A |=lin s ≈ t in the first, and K |=lin s ≈ t in the second case.

We define an operator χElin by

χElin[s ≈ t] = {σ̂[s] ≈ σ̂[t] | σ ∈M}.

This extends, additively, to sets of identities, so that for any set Σ of linear
identities we set

χElin[Σ] =
⋃
{χElin[s ≈ t] | s ≈ t ∈ Σ and s ≈ t ∈ (W lin

τ (X))2}.
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Using derived algebras we define now an operator χAlin on the set Alg(τ), first
on individual algebras and then on classes K of algebras, by

χAlin[A] = {σ(A) | σ ∈ Hyplin(τ)} and χAlin[K] =
⋃
{χAlin[A] | A ∈ K}.

The identity hypersubstitution is linear. Using this, one shows that both op-
erators are extensive, i.e. Σ ⊆ χElin[Σ] and K ⊆ χAlin[K]. Monotonicity of both
operators is a consequence of their definition and idempotency follows from the fact
that Hyplin(τ) forms a monoid. By definition, both operators are additive. From
the conjugate property there follows:

χAlin[A] |= s ≈ t⇔ A |= χElin[s ≈ t].

Altogether, as for arbitrary monoids of hypersubstitutions, also for linear hy-
persubstitutions, we have:

Proposition 2.12. Let τ be a fixed type. The two operators χElin and χAlin
are additive closure operators and are conjugate with respect to the relation |=
⊆ Alg(τ)× (W lin

τ (X))2 of satisfaction.

The sets of all fixed points {K | χAlin[K] = K,K ⊆ Alg(τ)} and {Σ | χKlin[Σ],Σ ⊆
W lin
τ (X))2} form complete sublattices of the power set lattices P(Alg(τ)) and

P((W lin
τ (X))2), respectively.

The relation |= of satisfaction of an equation as linear identity of an algebra A

defines the Galois connections (Id,Mod) and (Mod, Id).
The relation of linear hypersatisfaction induces a new Galois connection

(HlinId,HlinMod), defined on classes K and sets Σ of linear equations as follows:

HlinIdK = {s ≈ t ∈ (W lin
τ (X))2 | s ≈ t is a linear hyperidentity

in A for all A in K},

HlinModΣ = {A ∈ Alg(τ) | all identities in Σ are linear
hyperidentities of A}.

Sets of equations of the form HlinIdK are called linear hyperequational theories
and classes of algebras of the same type having the form HlinModΣ are called linear
hyperequational classes. As a property of a Galois connection, the combinations
HlinIdHlinMod and HlinModHlinId are closure operators and their fixed points
form two complete sublattices of the power set lattices P(Wτ (X))2 and P(Alg(τ)).
Now we may apply the general theory of conjugate pairs of additive closure operators
[11], (see [8]).

Theorem 2.13. For any variety V of type τ , the following conditions are equiva-
lent:

(i) V = HlinModHlinIdV .

(ii) χAlin[V ] = V .
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(iii) IdV = HlinIdV .

(iv) χElin[IdV ] = IdV .

And dually, for any equational theory Σ of type τ , the following conditions are
equivalent:

(i’) Σ = HlinIdHlinModΣ.

(ii’) χElin[Σ] = Σ.

(iii’) ModΣ = HlinModΣ.

(iv’) χAlin[ModΣ] = ModΣ.

From the general theory of conjugate pairs of additive closure operators for
K ⊆ Alg(τ) and Σ ⊆ (W lin

τ (X))2 one obtains also the following conditions:

(i) χAlin[K] ⊆ ModIdK ⇔ ModIdK = HlinModHlinIdK ⇔ χAlin[ModIdK] =
ModIdK.

(ii) χElin[Σ] ⊆ IdModΣ ⇔ IdModΣ = HlinIdHlinModΣ ⇔ χElin[IdModΣ] =
IdModΣ.

The second proposition can be used if a variety V = ModΣ is defined by a linear
equational basis Σ. If we want to check, whether IdV is a fixed point under the
operator χElin, it is enough to apply all linear hypersubstitutions to the equational
basis Σ: χElin[IdV ] = IdV ⇔ χElin[Σ] ⊆ IdV if V = ModΣ.

For any subset of equations and for any monoid M of hypersubstitutions we
defined a variety V to be M -solid, if V is a fixed point under the corresponding
operator χAM . Because of property (ii) we may define

Definition 2.14. A variety V of type τ is said to be linear-solid if it is linear and
if the defining linear identities are linear hyperidentities.

Not every identity in a linear-solid variety V must be a linear hyperidentity.
We consider the following example:

Example 2.15. Let τ = (2) and let M = Mod{x1(x2x3) ≈ (x1x2)x3, x1x2x3x4 ≈
x1x3x2x4} be the variety of medial semigroups. If we apply the four linear hyper-
substitutions σid, σx1

, σx2
, σf(x2,x1) to each of the both defining identities of variety

M , we get identities satisfied in M . Therefore, M is linear-solid, but the equation
x2

1x2x3x4 ≈ x2
1x3x2x4 is an identity in M , but not linear, therefore it cannot be a

linear hyperidentity since Hyp(τ) as a monoid contains the identity hypersubstitu-
tion and thus each linear hyperidentity is a linear identity.

3. The Monoid of Linear Hypersubstitutions of Type τ
|I|
n

In this section we consider monoids of linear hypersubstitutions when fi is n-
ary, n ≥ 2, for every i ∈ I, i.e. if the type contains |I| operation symbols of the
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same arity n, n ≥ 2. Such types will be denoted by τ
|I|
n , n ≥ 2. We recall that

projection hypersubstitutions map each operation symbol to a variable.

To determine all linear hypersubstitutions of this type, we describe the form of
n-ary terms. We denote the number of occurences of operation symbols in a term
t by op(t), i.e. op(t) is defined inductively by

(i) op(t) = 0 if t = xi ∈ Xn is a variable and

(ii) op(fi(t1, . . . , tni)) =
ni∑
j=1

op(tj) +1 if t = fi(t1, . . . , tni) is a composed n-ary

term.

Proposition 3.1. Let t be an n-ary linear term of type τ
|I|
n , n ≥ 2. Then op(t) ≤ 1.

Proof. If t = xi ∈ Xn, then op(t) = 0. Let t = fi(t1, . . . , tn) be an n-ary linear term.
If there were a number k, 1 ≤ k ≤ ni with op(tk) = 1, then |var(tk)| ≥ 2 since the
arity of all operation symbols in tk is greater than 1 and tk is linear. Assume that
xm 6= xl ∈ var(tk). These variables cannot occur in another subterm of t. But in
t there occur n− 1 pairwise different variables which are different from xm and xl.
This contradiction shows that op(tk) = 0 for all 1 ≤ k ≤ ni and thus op(t) = 1. 2

This observation allows us to describe the form of all n-ary linear terms and we
obtain

W lin

τ
|I|
n

(Xn) = {fi(xs(1), . . . , xs(n)) | i ∈ I and s is a permutation on{1, . . . , n}}.

Then it is also clear that there are precisely |I|n! + n- many n-ary linear terms.

Since every linear hypersubstitution maps the operation symbol fi to an n-

ary term we have a full description of Hyplin(τ
|I|
n ). Any linear hypersubstitution

maps the operation symbol fi to a variable xj ∈ Xn or to a term of the form
fj(xs(1), . . . , xs(n)) where s is a permutation on {1, . . . , sn}.

For the product of two linear hypersubstitutions σ1 and σ2 there are precisely
the following three possibilities:

1. σ2(fi) = xk ∈ Xn: Then

σ1 ◦h σ2 = σ̂1[σ2(fi)] = σ̂1[xk] = xk = σxk
(fi).

2. σ2(fi) = fj(xs(1), . . . , xs(n)) and σ1(fj) = xk. Then
(σ1 ◦h σ2)(fi) = σ̂1[σ2(fi)] = σ̂1[fj(xs(1), . . . , xs(n))] = σ1(fj)(xs(1), . . . , xs(n))
= xs(k) = σxs(k)

(fi).

3. σ2(fi) = fj(xs(1), . . . , xs(n)) and σ1(fj) = fk(xs′(1), . . . , xs′(n)). Then
(σ1◦hσ2)(fi) = σ̂1[σ2(fi)] = σ̂1[fj(xs(1), . . . , xs(n))] = σ1(fj)(xs(1), . . . , xs(n)) =
fk(xs′(1), . . . , xs′(n))(xs(1), . . . , xs(n)) = fk(x(s◦s′)(1), . . . , x(s◦s′)(n)).
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4. Interpretation of Linear Hypersubstitutions on Single Algebras

Term operations induced by linear terms are defined in the usual way. Let
A = (A; (fAi )i∈I) be an algebra of type τ and let W lin

τ (X) be the set of all linear
terms of type τ . Then the set (W lin

τ (X))A of all linear term operations of A is
defined as follows:

(i) xAi := en,Ai ,

(ii) if fi(t1, . . . , tni
) ∈W lin

τ (X) and assumed that tA1 , . . . , t
A
ni

are defined, then

(fi(t1, . . . , tni
))A = fAi (tA1 , . . . , t

A
ni

).

Here the right-hand side is the superposition of fAi and tA1 , . . . , t
A
ni

.

Let A be an algebra of type τ and let Wτ (X) be the set of all terms of type τ .
Then the set (Wτ (X))A of all term operations induced by terms of type τ is closed
under some superposition operations. These operations can be defined on the set

Let O(A) :=
⋃
n≥1

On(A) be the set of all operations on A. Here On(A) is the set

of all n-ary operations defined on A. Then (W lin
τ (X))A ⊂ O(A). The set O(A) is

closed under some superposition operations which were introduced by A. I. Mal’cev
(see [10]). Here we will use Mal’cev’s original notation in spite of the fact that the
letter τ was already used for the type of a language or an algebra.

Let f ∈ On(A) and g ∈ Om(A). Then

(f ∗ g)(x1, . . . , xm+n−1) := f(g(x1, . . . , xlin), xm+1, . . . , xm+n−1),

(τf)(x1, . . . , xn) := f(x2, x1, x3, . . . , xn),

(ζf)(x1, . . . , xn) := f(x2, x3, . . . , xn, x1),

(∆f)(x1, . . . , xn−1) := f(x1, x1, . . . , xn−1),

(∇f)(x1, x2, . . . , xn+1) := f(x2, . . . , xn+1),

if f ∈ On(A)with n > 1 and

(τf)(x1) = (ζf)(x1) = (∆f)(x1) = (∇f)(x1) = f(x1)

if f is a unary function.

The algebra ((Wτ (X))A; ∗, ζ, τ,∆,∇, e2,A
1 ) is said to be the clone of term oper-

ations of the algebra A.

Now we ask for the algebraic structure of ((W lin
τ (X))A. The answer was given

by Couceiro and Lehtonen in [4].

Theorem 4.1.([4]) Let A be an algebra of type τ and let (W lin
τ (X))A be the set

of all linear term operations induced on A, i.e. term operations induced by linear
terms on A. Then (W lin

τ (X))A is closed under the operations ∗, ζ, τ and ∇ and
contains all projections.
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Couceiro and Lehtonen proved in [4] also that the subalgebra ((W lin
τ (X))A; ζ, τ,

∇, ∗) of ((Wτ (X))A; ζ, τ,∇, ∗) is generated by the set {fAi | i ∈ I} ∪ JA, where JA
is the set of all projections.

Theorem 4.2. Let A be any algebra of type τ . If σ ∈ Hyplin(τ) satisfies
σ̂[IdA] ⊆ IdA. Then

Φ : (W lin
τ (X))A → (W lin

τ (X))A defined by tA → (σ̂[t])A

is an endomorphism of ((W lin
τ (X))A; ∗, ζ, τ,∇).

Proof. 1. Φ is well-defined: assume that tA1 = tA2 , t1, t2 ∈ (W lin
τ (X))A There follows

t1 ≈ t2 ∈ IdA ∩ (W lin
τ (X))2 and then

σ̂[t1] ≈ σ̂[t2] ∈ σ̂[IdA ∩ (W lin
τ (X))2] = σ̂[IdlinA].

This means (σ̂[t1])A = (σ̂[t2])A.
2. Now we show the compatibility of Φ with the operations ζ and τ . Let tA ∈
(W lin

τ (X))A, then ζ(tA) = (t(x2, x3, . . . , xn, x1))A and

Φ(ζ(tA)) =(σ̂[t(x2, x3, . . . , xn, x1)])A = (σ̂[t](x2, x3, . . . , xn, x1))A.

On the other hand we have

Φ(tA) = (σ̂[t])A and ζ(Φ(tA)) = (σ̂[t](x2, x3, . . . , xn, x1))A.

This shows Φ(ζ(tA)) = ζ(Φ(tA)). In the same way we obtain Φ(τ(tA)) = τ(Φ(tA)).
3. ∇(tA) = (t(x2, x3, . . . , xn+1))A and

Φ(∇(tA)) = (σ̂[t(x2, x3, . . . , xn+1)])A

= (σ̂[t](x2, x3, . . . , xn+1))A

= ∇(Φ(tA)).

4. For the binary operation ∗ we get

Φ(tA ∗ sA) = Φ(t(s, xm+1, . . . , xm+n−1)A))

= (σ̂[t(s, xm+1, . . . , xm+n−1)])A))

= (σ̂[t](σ̂[s], xm+1, . . . , xm+n−1))A

= (σ̂[t])A ∗ (σ̂[s])A

= Φ(tA) ∗ Φ(sA). 2

Because of e2,A2 = τ(e2,A1 ) and
(∇f)(x1, . . . , xn+1)

= (f ∗ e2,A2 )(x1, . . . , xn+t)

= f(e2,A2 (x1, x2), x3, . . . , xn+1)
= f(x2, x3, . . . , xn+1), i.e.

(∇f) = f ∗ e2,A2 = f ∗ τ(e2,A1 ), the algebra

((W lin
τ )A; ∗, ζ, τ,∇) is rationally equivalent to ((W lin

τ )A; ∗, ζ, τ, e2,A2 ) and the following the-
orem holds also for this algebra.
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