KYUNGPOOK Math. J. 59(2019), 617-629
https://doi.org/10.5666/KMJ.2019.59.4.617
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

The Monoid of Linear Hypersubstitutions

Thawhat Changphas*, Bundit Pibaljommee and Klaus Denecke
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
e-mail: thacha@kku.ac.th, banpib@kku.ac.th and klausdenecke@hotmail.com

Abstract. A term is called linear if each variable which occurs in the term, occurs only once. A hypersubstitution is said to be linear if it maps any operation symbol to a linear term of the same arity. Linear hypersubstitutions have some importance in Theoretical Computer Science since they preserve recognizability [7]. We show that the collection of all linear hypersubstitutions forms a monoid. Linear hypersubstitutions are used to define linear hyperidentities. The set of all linear term operations of a given algebra forms with respect to certain superposition operations a function algebra. Hypersubstitutions define endomorphisms on this function algebra.

1. Introduction

The concept of a term is one of the fundamental concepts of algebra. To define terms one needs variables and operation symbols. Let $\left(f_{i}\right)_{i \in I}$ be an indexed set of operation symbols. To every operation symbol f_{i} there belongs an integer n_{i} as its arity. The type of the formal language of terms is the indexed set $\tau=\left(n_{i}\right)_{i \in I}$ of these arities. Moreover, one needs variables from an alphabet X. Let $X_{n}:=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite alphabet and let $X:=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ be countably infinite. Then n-ary terms of type τ are defined as follows:
Let $n \geq 1$.
(i) Every variable $x_{j} \in X_{n}$ is an n-ary term (of type τ).
(ii) If $t_{1}, \ldots, t_{n_{i}}$ are n-ary terms and if f_{i} is an n_{i}-ary operation symbol, then $f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ is an n-ary term (of type τ).
(iii) The set $W_{\tau}\left(X_{n}\right)$ of all n-ary terms is the smallest set which contains x_{1}, \ldots, x_{n} and is closed under finite application of (ii).

* Corresponding Author.

Received August 22, 2018; revised December 18, 2018; accepted December 19, 2018.
2010 Mathematics Subject Classification: 08B15, 08B25.
Key words and phrases: linear term, linear hypersubstitution, linear hyperidentity.

The set of all terms of type τ over the countably infinite alphabet X is defined by $W_{\tau}(X):=\bigcup_{n \geq 1} W_{\tau}\left(X_{n}\right)$.

On the set $W_{\tau}(X)$ of all terms of type τ an algebra $\mathcal{F}_{\tau}(X)$ of type τ can be defined if we consider the operation symbols f_{i} as n_{i}-ary operations $\bar{f}_{i}: W_{\tau}(X)^{n_{i}} \rightarrow$ $W_{\tau}(X)$ with $\left(t_{1}, \ldots, t_{n_{i}}\right) \mapsto \bar{f}_{i}\left(t_{1}, \ldots, t_{n_{i}}\right):=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$. This is possible by (ii) of the definition of terms. Then the pair $\mathcal{F}(X):=\left(W_{\tau}(X) ;\left(\bar{f}_{i}\right)_{i \in I}\right)$ is an algebra of type τ which is free with respect to the class $\operatorname{Alg}(\tau)$ of all algebras of type τ, freely generated by X in the sense that for every algebra $\mathcal{A} \in \operatorname{Alg}(\tau)$ any mapping $\varphi: X \rightarrow$ A can be extended to a homomorphism $\bar{\varphi}: \mathcal{F}_{\tau}(X) \rightarrow \mathcal{A}$ with $\mathcal{A}=\left(A ;\left(f_{i}^{\mathcal{A}}\right)_{i \in I}\right)$. Here $f_{i}^{\mathcal{A}}: A^{n_{i}} \rightarrow A$ are the n_{i}-ary operations defined on A which correspond to the operation symbols f_{i}.

A term in which each variable occurs at most once, is said to be linear. For a formal definition of n-ary linear terms we replace (ii) in the definition of terms by a slightly different condition.

Definition 1.1. An n-ary linear term of type τ is defined in the following inductive way:
(i) $x_{j} \in X_{n}$ is for any $j \in\{1, \ldots, n\}$ an n-ary linear term (of type τ).
(ii) If $t_{1}, \ldots, t_{n_{i}}$ are n-ary linear terms and if $\operatorname{var}\left(t_{j}\right) \cap \operatorname{var}\left(t_{k}\right)=\emptyset$ for all $1 \leq$ $j<k \leq n_{i}$, then $f_{i}\left(t_{1} \ldots, t_{n_{i}}\right)$ is an n-ary linear term.
(iii) The set $W_{\tau}^{l i n}\left(X_{n}\right)$ of all n-ary linear terms is the smallest set which contains x_{1}, \ldots, x_{n} and is closed under finite application of (ii).

The set of all linear terms of type τ over the countably infinite alphabet X is defined by $W_{\tau}^{\text {lin }}(X):=\bigcup_{n \geq 1} W_{\tau}^{\text {lin }}\left(X_{n}\right)$.

The set $W_{\tau}^{l i n}(X)$ is not closed under application of the \bar{f}_{i} 's since $f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ needs not to be linear if $t_{1}, \ldots, t_{n_{i}}$ are linear. But, if we define to every f_{i} a partial operation \hat{f}_{i} on $W_{\tau}^{l i n}(X)$ by

$$
\hat{f}_{i}\left(t_{1}, \ldots, f_{n_{i}}\right):=\left\{\begin{array}{cl}
f_{i}\left(t_{1}, \ldots, f_{n_{i}}\right) & \text { if } \operatorname{var}\left(t_{j}\right) \cap \operatorname{var}\left(t_{k}\right)=\emptyset \text { for all } \\
& 1 \leq j<k \leq n_{i} \\
\text { not defined, } & \text { otherwise }
\end{array}\right.
$$

then $\mathcal{F}_{\tau}^{\text {lin }}(X):=\left(W_{\tau}^{\text {lin }}(X) ;\left(\hat{f}_{i}\right)_{1 \in I}\right)$ is a partial algebra of type τ. The domain of \hat{f}_{i} consists of all n_{i}-tuples $\left(t_{1}, \ldots, t_{n_{i}}\right)$ satisfying the condition $\operatorname{var}\left(t_{j}\right) \cap \operatorname{var}\left(t_{k}\right)=$ $\emptyset, 1 \leq j<k \leq n_{i}$.

Let $\operatorname{PAlg}(\tau)$ be the class of all partial algebras of type τ. If $\mathcal{A}, \mathcal{B} \in \operatorname{PAlg}(\tau)$, then a mapping $\bar{h}: A \rightarrow B$ is called a homomorphism from \mathcal{A} to \mathcal{B} if for all $i \in I$

Here $\operatorname{var}\left(t_{j}\right)$ is the set of all variables occurring in t_{j}.
the following is satisfied:
if $\left(a_{1}, \ldots, a_{n_{i}}\right) \in \operatorname{dom} f_{i}^{\mathcal{A}}$, then $\left(\bar{h}\left(a_{1}\right), \ldots, \bar{h}\left(a_{n_{i}}\right)\right) \in \operatorname{dom} f_{i}^{\mathcal{B}}$, and then

$$
\bar{h}\left(f_{i}^{\mathcal{A}}\left(a_{1}, \ldots a_{n_{i}}\right)\right)=f_{i}^{\mathcal{B}}\left(\bar{h}\left(a_{1}\right), \ldots, \bar{h}\left(a_{n_{i}}\right)\right) .
$$

(Here $\operatorname{dom} f_{i}^{\mathcal{A}}$ is the domain of the function $\left.f_{i}^{\mathcal{A}}\right)$. It is easy to see that $\mathcal{F}_{\tau}^{l i n}(X)$ is a free algebra w.r.t. $P \operatorname{Alg}(\tau)$, freely generated by X, i.e. that for all $\mathcal{A} \in \operatorname{PAlg}(\tau)$ any mapping $h: X \rightarrow A$ can be extended to a homomorphism \bar{h}.

The set $W_{\tau}(X)$ of all terms of type τ is closed under composition, i.e. if t_{1}, \ldots, t_{n} are m-ary terms of type τ and if $f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)$ is an n-ary term of type τ, then the term

$$
f_{i}\left(s_{1}\left(t_{1}, \ldots, t_{n}\right), \ldots, s_{n_{i}}\left(t_{1}, \ldots, t_{n}\right)\right)
$$

obtained by replacing the variables x_{1}, \ldots, x_{n} occurring in $s_{1}, \ldots s_{n_{i}}$ by the terms $t_{1}, \ldots, t_{n_{i}}$ is a new m-ary term of type τ. This is not true for linear terms.

Pairs of linear terms are said to be linear equations and if a linear equation is satisfied in an algebra or in a variety of algebras we speak of a linear identity. Linear identities are studied in many papers, see e.g. $[1,3,9]$. Let

$$
\operatorname{Lin}_{\tau}(X):=\left\{s \approx t \mid s, t \in W_{\tau}^{l i n}(X)\right\}=W_{\tau}^{l i n}(X) \times W_{\tau}^{l i n}(X)=\left(W_{\tau}^{l i n}(X)\right)^{2}
$$

be the set of all linear equations of type τ. It is well-known that the set $\left(W_{\tau}(X)\right)^{2}$ of all equations of type τ forms a fully invariant congruence relation on the term algebra $\mathcal{F}_{\tau}(X)$.

Theorem 1.2. $\operatorname{Lin}_{\tau}(X)$ is a congruence on the partial linear term algebra $\mathcal{F}_{\tau}^{l i n}(X)=\left(W_{\tau}^{l i n}(X) ;\left(\hat{f}_{i}\right)_{i \in I}\right)$.
Proof. Clearly, $\operatorname{Lin}(\tau)$ is reflexive, symmetric and transitive. Assume that $s_{1} \approx$ $t_{1}, \ldots, s_{n_{i}} \approx t_{n_{i}} \in \operatorname{Lin}(\tau)$, that $\left(s_{1}, \ldots, s_{n_{i}}\right) \in \operatorname{dom} \hat{f}_{i}$, i.e. $\operatorname{var}\left(s_{j}\right) \cap \operatorname{var}\left(s_{k}\right)=\emptyset$, for all $j, k \in\left\{1, \ldots, n_{i}\right\}, j \neq k$ and that $\left(t_{1}, \ldots, t_{n_{i}}\right) \in \operatorname{dom} \hat{f}_{i}$, i.e. $\operatorname{var}\left(t_{j}\right) \cap \operatorname{var}\left(t_{k}\right)=\emptyset$, for all $j, k \in\left\{1, \ldots, n_{i}\right\}, j \neq k$. Then $\hat{f}_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)=f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)$ and $\hat{f}_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$. Then from $f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right) \approx f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right) \in$ $W_{\tau}(X)^{2}$ (since $W_{\tau}(X)$ is a congruence on $\left.\mathcal{F}_{\tau}(X)\right)$ there follows $\hat{f}_{i}\left(s_{1}, \ldots, s_{n_{i}}\right) \approx$ $\hat{f}_{i}\left(t_{1}, \ldots, t_{n_{i}}\right) \in \operatorname{Lin}_{\tau}(X)$.

Since linearity of the terms on the left-hand side and the right-hand side of a linear identity can get lost under substitution, $\operatorname{Lin}(\tau)$ is not fully invariant.

We consider the following example. Let $\tau=(2)$ with the binary operation symbol f. Then $W_{(2)}^{\text {lin }}\left(X_{2}\right)=\left\{x_{1}, x_{2}, f\left(x_{1}, x_{2}\right), f\left(x_{2}, x_{1}\right)\right\}$ and thus
$\operatorname{Lin}_{(2)}\left(X_{2}\right)=\left\{x_{1} \approx x_{1}, x_{1} \approx x_{2}, x_{1} \approx f\left(x_{1}, x_{2}\right), x_{1} \approx f\left(x_{2}, x_{1}\right), x_{2} \approx x_{1}, x_{2} \approx\right.$ $x_{2}, x_{2} \approx f\left(x_{1}, x_{2}\right), x_{2} \approx f\left(x_{2}, x_{1}\right), f\left(x_{1}, x_{2}\right) \approx x_{1}, f\left(x_{1}, x_{2}\right) \approx x_{2}, f\left(x_{1}, x_{2}\right) \approx$ $f\left(x_{1}, x_{2}\right), f\left(x_{1}, x_{2}\right) \approx f\left(x_{2}, x_{1}\right), f\left(x_{2}, x_{1}\right) \approx x_{1}, f\left(x_{2}, x_{1}\right) \approx x_{2}, f\left(x_{2}, x_{1}\right) \approx$ $\left.f\left(x_{1}, x_{2}\right), f\left(x_{2}, x_{1}\right) \approx f\left(x_{2}, x_{1}\right)\right\}$.
Substituting in $x_{1} \approx f\left(x_{1}, x_{2}\right)$ for x_{1} the linear term $f\left(x_{2}, x_{1}\right)$ we get $f\left(x_{2}, x_{1}\right) \approx$ $f\left(f\left(x_{2}, x_{1}\right), x_{2}\right) \notin \operatorname{Lin}_{(2)}\left(X_{2}\right)$.

We recall that $s \approx t$ is satisfied as an identity in the algebra $\mathcal{A}=\left(A ;\left(f_{i}^{\mathcal{A}}\right)_{i \in I}\right)$ of type τ if $s^{\mathcal{A}}=t^{\mathcal{A}}$, i.e. if the induced term operations are equal. In this case we write $\mathcal{A} \models s \approx t$. Let V be a variety of type τ, i.e. a model class of a set Σ of equations:

$$
V=\operatorname{Mod} \Sigma=\{\mathcal{A} \in \operatorname{Alg}(\tau) \mid \forall s \approx t \in \Sigma(\mathcal{A} \models s \approx t)\}
$$

Definition 1.3. A variety V is said to be linear, if there is a set $\Sigma \subseteq \operatorname{Lin}_{\tau}(X)$ of linear equations of type τ such that $V=\operatorname{Mod} \Sigma$.

Let $I d^{l i n}(V)$ be the set of all linear identities in V. Using the fact that $I d V$ is a fully invariant congruence on the term algebra $\mathcal{F}_{\tau}(X)$, in a similar way as in the proof of Theorem 1.2 we show that $I d^{l i n}(V)$ is a congruence on the partial linear term algebra $\mathcal{F}_{\tau}^{l i n}(X)$. This fact gives a derivation concept for linear identities, similar to the derivation concept of identities and allows us to consider and to study a linear equational logic. Not every identity of a linear variety is linear. This means that by using the usual derivation concept of Universal Algebra from linear identities also non-linear identities can be derived.

For example, $M=\operatorname{Mod}\left\{x_{1}\left(x_{2} x_{3}\right) \approx\left(x_{1} x_{2}\right) x_{3}, x_{1} x_{2} x_{3} x_{4} \approx x_{1} x_{3} x_{2} x_{4}\right\}$, the variety of medial semigroups, is linear, $x_{1}^{2} x_{2} x_{3} x_{4} \approx x_{1}^{2} x_{3} x_{2} x_{4}$ is an identity in M, but not linear.

For the basic concepts on Universal Algebra see [5] and for partial algebras see [2].

2. Linear Hypersubstitutions and Linear Hyperidentities

A mapping $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau}(X)$ which maps every n_{i}-ary operation symbol f_{i} to an n_{i}-ary term of type τ is said to be a hypersubstitution (of type τ). The extension $\hat{\sigma}: W_{\tau}(X) \rightarrow W_{\tau}(X)$ is defined inductively by
(i) $\hat{\sigma}[x]:=x$ for any variable $x \in X$ and
(ii) $\hat{\sigma}\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]=\sigma\left(f_{i}\right)\left(\hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)$ assumed that the results $\hat{\sigma}\left[t_{j}\right], 1 \leq$ $j \leq n_{i}$, are already defined. Here the right-hand side means the superposition of terms.

Then a product $\sigma_{1} \circ_{h} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ can be defined and the set $\operatorname{Hyp}(\tau)$ of all hypersubstitutions of type τ becomes a monoid. Hypersubstitutions can be applied to identities and to algebras of type τ. Let $\mathcal{A}=\left(A ;\left(f_{i}^{\mathcal{A}}\right)_{i \in I}\right)$ be an algebra of type τ. Then the identity $s \approx t$ is said to be a hyperidentity satisfied in \mathcal{A}, if $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ are satisfied as identities in \mathcal{A} for all $\sigma \in \operatorname{Hyp}(\tau)$. We write $\mathcal{A} \vDash s \approx t$ if $s \approx t$ is satisfied as an identity in \mathcal{A} and $\mathcal{A} \models_{\text {hyp }} s \approx t$ if $s \approx t$ is satisfied as a hyperidentity in \mathcal{A}. The algebra $\sigma[\mathcal{A}]:=\left(A ;\left(\sigma\left(f_{i}\right)\right)_{i \in I}^{\mathcal{A}}\right)$ is said to be derived from \mathcal{A} by σ. There holds

$$
\mathcal{A} \models \hat{\sigma}[s] \approx \hat{\sigma}[t] \Leftrightarrow \sigma(\mathcal{A}) \models s \approx t
$$

(This equivalence is called the 'conjugate property'). For more information on hyperidentities and hypersubstitutions see e.g. $[5,6,8]$.

Now we consider hypersubstitutions mapping the operation symbols to linear terms.

Definition 2.1. A linear hypersubstitution of type τ is a hypersubstitution

$$
\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau}^{l i n}(X)
$$

Let $H y p^{l i n}(\tau)$ be the set of all linear hypersubstitutions of type τ.
Example 2.2. Let $\tau=(2)$ with the binary operation symbol f. Since $W_{(2)}\left(X_{2}\right)=\left\{x_{1}, x_{2}, f\left(x_{1}, x_{2}\right), f\left(x_{2}, x_{1}\right)\right\}$ is the set of all binary linear terms of type (2), Hyp ${ }^{l i n}(2)$ consists of four hypersubstitutions which can be written as $\sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{f\left(x_{1}, x_{2}\right)}$ and $\sigma_{f\left(x_{2}, x_{1}\right)}$. If we apply the multiplication \circ_{h} on this set, we obtain a monoid where the operation \circ_{h} can be described by the following table:

\circ_{h}	$\sigma_{f\left(x_{1}, x_{2}\right)}$	$\sigma_{f\left(x_{2}, x_{1}\right)}$	$\sigma_{x_{1}}$	$\sigma_{x_{2}}$
$\sigma_{f\left(x_{1}, x_{2}\right)}$	$\sigma_{f\left(x_{1}, x_{2}\right)}$	$\sigma_{f\left(x_{2}, x_{1}\right)}$	$\sigma_{x_{1}}$	$\sigma_{x_{2}}$
$\sigma_{f\left(x_{2}, x_{1}\right)}$	$\sigma_{f\left(x_{2}, x_{1}\right)}$	$\sigma_{f\left(x_{1}, x_{2}\right)}$	$\sigma_{x_{1}}$	$\sigma_{x_{2}}$
$\sigma_{x_{1}}$	$\sigma_{x_{1}}$	$\sigma_{x_{2}}$	$\sigma_{x_{1}}$	$\sigma_{x_{2}}$
$\sigma_{x_{2}}$	$\sigma_{x_{2}}$	$\sigma_{x_{1}}$	$\sigma_{x_{1}}$	$\sigma_{x_{2}}$.

Here $\sigma_{f\left(x_{1}, x_{2}\right)}$ is the identity element of the monoid (Hyplin $\left.(2) ; \circ_{h}, \sigma_{i d}\right)$.
In the general case it is not clear whether or not the extension $\hat{\sigma}$ of a linear hypersubstitution maps linear terms to linear terms and then it is also not clear whether or not the linear hypersubstitutions form a monoid. The first fact is wellknown (see e. g. [5]).
Lemma 2.3. For any hypersubstitution σ and any term t we have

$$
\operatorname{var}(t) \supseteq \operatorname{var}(\hat{\sigma}[t])
$$

Proof. We give a proof by induction on the complexity of t. If $t=x_{i} \in X$ is a variable, then

$$
\operatorname{var}(t)=\operatorname{var}\left(x_{i}\right)=\left\{x_{i}\right\}=\operatorname{var}\left(\hat{\sigma}\left[x_{i}\right]\right) .
$$

Assume that $t=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ and that $\operatorname{var}\left(t_{j}\right) \supseteq \operatorname{var}\left(\hat{\sigma}\left[t_{j}\right]\right), j=1, \ldots, n_{i}$. Then

$$
\begin{aligned}
\operatorname{var}(t) & =\bigcup_{j=1}^{n_{i}} \operatorname{var}\left(t_{j}\right) & \supseteq \bigcup_{j=1}^{n_{i}} \operatorname{var}\left(\hat{\sigma}\left[t_{j}\right]\right) \\
& \supseteq \operatorname{var}\left(\sigma\left(f_{i}\right)\left(\hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)\right) & =\operatorname{var}(\hat{\sigma}[t])
\end{aligned}
$$

by properties of the superposition of terms.
Then we obtain:
Lemma 2.4. For any linear term $t=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ and any linear hypersubstitution σ we get

$$
\operatorname{var}\left(\hat{\sigma}\left[t_{j}\right]\right) \cap \operatorname{var}\left(\hat{\sigma}\left[t_{k}\right]\right)=\emptyset
$$

for all $1 \leq j<k \leq n_{i}$.
Proof. The previous lemma gives $\operatorname{var}\left(t_{l}\right) \supseteq \operatorname{var}\left(\hat{\sigma}\left[t_{l}\right]\right)$ for any $1 \leq l \leq n_{i}$ and thus

$$
\emptyset=\operatorname{var}\left(t_{j}\right) \cap \operatorname{var}\left(t_{k}\right) \supseteq \operatorname{var}\left(\hat{\sigma}\left[t_{j}\right]\right) \cap \operatorname{var}\left(\hat{\sigma}\left[t_{k}\right]\right)=\emptyset .
$$

Lemma 2.5. The extension of a linear hypersubstitution maps linear terms to linear terms.
Proof. Let $t \in W_{\tau}^{\text {lin }}(X)$ and let $\sigma \in \operatorname{Hyp}^{\text {lin }}(\tau)$. If $t=x_{i}$, then $\hat{\sigma}\left[x_{i}\right]=x_{i}$ is linear. Otherwise, i.e. if $t=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$, by the previous lemma we have $\operatorname{var}\left(\hat{\sigma}\left[t_{j}\right]\right) \cap \operatorname{var}\left(\hat{\sigma}\left[t_{k}\right]\right)=\emptyset$ for all $1 \leq j<k \leq n_{i}$. Inductively we may assume that $\hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]$ are linear. Altogether, $\hat{\sigma}[t]=\sigma\left(f_{i}\right)\left(\hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)$ is linear.

One more consequence is
Theorem 2.6. $\left(H_{y p}^{l i n}(\tau) ; \circ_{h}, \sigma_{i d}\right)$ is a submonoid of $\left(H y p(\tau) ; \circ_{h}, \sigma_{i d}\right)$.
Proof. If $\sigma_{1}, \sigma_{2} \in \operatorname{Hyp}^{l i n}(\tau)$, we have to show that $\sigma_{1} \circ_{h} \sigma_{2} \in H y p^{l i n}(\tau)$. Indeed, $\left(\sigma_{1} \circ_{h} \sigma_{2}\right)\left(f_{i}\right)=\hat{\sigma}_{1}\left[\sigma_{2}\left(f_{i}\right)\right]$. Since $\sigma_{2}\left(f_{i}\right)$ is linear and since σ_{1} is linear, by the previous lemma $\hat{\sigma}_{1}\left[\sigma_{2}\left(f_{i}\right)\right]$ is linear. The identity hypersubstitution $\sigma_{i d}$ is linear since $\sigma_{i d}\left(f_{i}\right)=f_{i}\left(x_{1}, \ldots x_{n_{i}}\right)$ is linear.

Now we will give two more examples of linear hypersubstitions.
Example 2.7. Let $\tau=(4,2)$ be the type with a quaternary operation symbol g and a binary operation symbol f. Let σ be the hypersubstitution which maps g to $f\left(f\left(x_{1}, x_{3}\right), f\left(x_{2}, x_{4}\right)\right)$ and f to $f\left(x_{1}, x_{2}\right)$. Then $\sigma \in \operatorname{Hyp}^{l i n}(4,2)$.
Example 2.8. Let $\tau=(4,2,1)$ be the type with a quaternary operation symbol g, a binary operation symbol f and a unary operation symbol h and let σ be the hypersubstitution which maps g to $f\left(f\left(x_{1}, x_{3}\right), h\left(x_{4}\right)\right)$, which maps f to $f\left(x_{1}, x_{2}\right)$ and h to $h\left(x_{1}\right)$. Obviously, $\sigma \in \operatorname{Hyp}^{l i n}(4,2,1)$.

The second example shows that there are linear hypersubstitutions which map n_{i}-ary operation symbols to terms, which do not use all variables from $\left\{x_{1}, \ldots, x_{n_{i}}\right\}$.

As for an arbitrary mapping also for the extension of a hypersubstitution one may consider the kernel of this mapping (see e.g. [8]). In particular, by Lemma 2.4, this can be done for a linear hypersubstitution σ since its extension $\hat{\sigma}$ maps $W_{\tau}^{\text {lin }}(X)$ to $W_{\tau}^{\text {lin }}(X)$.
Definition 2.9. Let $\sigma \in \operatorname{Hyp}^{\text {lin }}(\tau)$. Then for $s, t \in W_{\tau}^{\text {lin }}(X)$

$$
\operatorname{Ker} \sigma:=\{(s, t) \mid \hat{\sigma}[s]=\hat{\sigma}[t]\}
$$

is said to be the kernel of the linear hypersubstitution σ.
For $\sigma \in \operatorname{Hyp}(\tau)$ the kernel Ker σ is a fully invariant congruence on the absolutely free algebra $\mathcal{F}_{\tau}(X)=\left(W_{\tau}(X) ;\left(\bar{f}_{i}\right)_{i \in I}\right)$. For linear hypersubstitutions we get
Proposition 2.10. Let $\sigma \in \operatorname{Hyp}^{\text {lin }}(\tau)$. Then Ker σ is a congruence on the partial algebra $\mathscr{F}_{\tau}^{\text {lin }}(X)=\left(W_{\tau}^{\text {lin }}(X) ;\left(\hat{f}_{i}\right)_{i \in I}\right)$.

Proof. $\operatorname{Ker} \sigma$ is clearly an equivalence relation on $W_{\tau}^{\text {lin }}(X)$. For $i \in I$ let $\left(s_{1}, t_{1}\right) \in$ $\operatorname{Ker} \sigma, \ldots,\left(s_{n_{i}}, t_{n_{i}}\right) \in K e r \sigma$ and thus

$$
\begin{equation*}
\hat{\sigma}\left[s_{1}\right]=\hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[s_{n_{i}}\right]=\hat{\sigma}\left[t_{n_{i}}\right] . \tag{*}
\end{equation*}
$$

Assume that $\hat{f}_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)$ and $\hat{f}_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ exist. Then

$$
\begin{equation*}
\hat{f}_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)=f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right) \text { and } \hat{f}_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right) \tag{**}
\end{equation*}
$$

and by Lemma 2.3, $\operatorname{var}\left(\hat{\sigma}\left[s_{j}\right]\right) \cap \operatorname{var}\left(\hat{\sigma}\left[s_{k}\right]\right)=\emptyset$ and $\operatorname{var}\left(\hat{\sigma}\left[t_{j}\right]\right) \cap \operatorname{var}\left(\hat{\sigma}\left[t_{k}\right]\right)=\emptyset$ for all $1 \leq j<k \leq n_{i}$. Applying the linear term $\sigma\left(f_{i}\right)$ on $(*)$ we obtain

$$
\sigma\left(f_{i}\right)\left(\hat{\sigma}\left[s_{1}\right], \ldots, \hat{\sigma}\left[s_{n_{i}}\right]\right)=\sigma\left(f_{i}\right)\left(\hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)
$$

Both sides of this equation are linear terms and by the definition of the extension and we obtain

$$
\hat{\sigma}\left[f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)\right]=\hat{\sigma}\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]
$$

By ($* *$) we have

$$
\hat{\sigma}\left[\hat{f}_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)\right]=\hat{\sigma}\left[\hat{f}_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]
$$

and then

$$
\left(\hat{f}_{i}\left(s_{1}, \ldots, s_{n_{i}}\right), \hat{f}_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right) \in \operatorname{Ker} \sigma
$$

We remark that Theorem 2.6 has important consequences. Let \mathcal{M} be an arbitrary submonoid of $\mathcal{H} y p(\tau)$ with the universe M. A variety V of algebras of type τ is said to be M-solid if for every $s \approx t \in I d V$ and every $\sigma \in M, \hat{\sigma}[s] \approx \hat{\sigma}[t] \in I d V$. The collection of all M-solid varieties of type τ forms a complete sublattice of the lattice of all varieties of type τ. Since the set of all linear identities of a variety V is not closed under substitution of terms, i.e. is not an equational theory, we cannot apply the general theory of M-hyperidentities and M-solid varieties. Therefore, not all of our next definitions follow the general theory.

Definition 2.11. Let \mathcal{A} be an algebra and let K be a class of algebras, both of type τ. A linear identity $s \approx t$ is said to be a linear hyperidentity in \mathcal{A} (respectively, in K) if $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in I d \mathcal{A}$ (respectively, $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in I d K$) for every $\sigma \in H_{y p}^{l i n}(\tau)$. In this case we write $\mathcal{A} \models_{\text {lin }} s \approx t$ in the first, and $K \models_{\text {lin }} s \approx t$ in the second case.

We define an operator $\chi_{\text {lin }}^{E}$ by

$$
\chi_{l i n}^{E}[s \approx t]=\{\hat{\sigma}[s] \approx \hat{\sigma}[t] \mid \sigma \in M\}
$$

This extends, additively, to sets of identities, so that for any set Σ of linear identities we set

$$
\chi_{l i n}^{E}[\Sigma]=\bigcup\left\{\chi_{l i n}^{E}[s \approx t] \mid s \approx t \in \Sigma \text { and } s \approx t \in\left(W_{\tau}^{l i n}(X)\right)^{2}\right\}
$$

Using derived algebras we define now an operator $\chi_{\text {lin }}^{A}$ on the set $\operatorname{Alg}(\tau)$, first on individual algebras and then on classes K of algebras, by

$$
\chi_{\text {lin }}^{A}[\mathcal{A}]=\left\{\sigma(\mathcal{A}) \mid \sigma \in H_{y p}^{l i n}(\tau)\right\} \text { and } \chi_{\text {lin }}^{A}[K]=\bigcup\left\{\chi_{\text {lin }}^{A}[\mathcal{A}] \mid \mathcal{A} \in \mathcal{K}\right\} .
$$

The identity hypersubstitution is linear. Using this, one shows that both operators are extensive, i.e. $\Sigma \subseteq \chi_{l i n}^{E}[\Sigma]$ and $K \subseteq \chi_{\text {lin }}^{A}[K]$. Monotonicity of both operators is a consequence of their definition and idempotency follows from the fact that $H_{y p}{ }^{l i n}(\tau)$ forms a monoid. By definition, both operators are additive. From the conjugate property there follows:

$$
\chi_{\text {lin }}^{A}[\mathcal{A}] \models s \approx t \Leftrightarrow \mathcal{A} \models \chi_{\text {lin }}^{E}[s \approx t] .
$$

Altogether, as for arbitrary monoids of hypersubstitutions, also for linear hypersubstitutions, we have:

Proposition 2.12. Let τ be a fixed type. The two operators $\chi_{\text {lin }}^{E}$ and $\chi_{\text {lin }}^{A}$ are additive closure operators and are conjugate with respect to the relation \vDash $\subseteq A l g(\tau) \times\left(W_{\tau}^{l i n}(X)\right)^{2}$ of satisfaction.

The sets of all fixed points $\left\{K \mid \chi_{\text {lin }}^{A}[K]=K, K \subseteq A l g(\tau)\right\}$ and $\left\{\Sigma \mid \chi_{l i n}^{K}[\Sigma], \Sigma \subseteq\right.$ $\left.\left.W_{\tau}^{l i n}(X)\right)^{2}\right\}$ form complete sublattices of the power set lattices $\mathcal{P}(A l g(\tau))$ and $\mathcal{P}\left(\left(W_{\tau}^{\text {lin }}(X)\right)^{2}\right)$, respectively.

The relation \models of satisfaction of an equation as linear identity of an algebra \mathcal{A} defines the Galois connections (Id, Mod) and (Mod,Id).

The relation of linear hypersatisfaction induces a new Galois connection $\left(H_{\text {lin }} I d, H_{l i n} M o d\right)$, defined on classes K and sets Σ of linear equations as follows:

$$
\begin{aligned}
H_{\text {lin }} I d K= & \left\{s \approx t \in\left(W_{\tau}^{\text {lin }}(X)\right)^{2} \mid s \approx t\right. \text { is a linear hyperidentity } \\
& \text { in } \mathcal{A} \text { for all } \mathcal{A} \text { in } K\}, \\
H_{\text {lin }} \operatorname{Mod} \Sigma= & \{\mathcal{A} \in \operatorname{Alg}(\tau) \mid \text { all identities in } \Sigma \text { are linear } \\
& \text { hyperidentities of } \mathcal{A}\} .
\end{aligned}
$$

Sets of equations of the form $H_{\text {lin }} I d K$ are called linear hyperequational theories and classes of algebras of the same type having the form $H_{l i n} M o d \Sigma$ are called linear hyperequational classes. As a property of a Galois connection, the combinations $H_{\text {lin }} I d H_{\text {lin }} M o d$ and $H_{\text {lin }} M o d H_{\text {lin }} I d$ are closure operators and their fixed points form two complete sublattices of the power set lattices $\mathcal{P}\left(W_{\tau}(X)\right)^{2}$ and $\mathcal{P}(\operatorname{Alg}(\tau))$. Now we may apply the general theory of conjugate pairs of additive closure operators [11], (see [8]).

Theorem 2.13. For any variety V of type τ, the following conditions are equivalent:
(i) $V=H_{l i n} M o d H_{l i n} I d V$.
(ii) $\chi_{\text {lin }}^{A}[V]=V$.
(iii) $I d V=H_{l i n} I d V$.
(iv) $\chi_{\text {lin }}^{E}[I d V]=I d V$.

And dually, for any equational theory Σ of type τ, the following conditions are equivalent:
(i') $\Sigma=H_{\text {lin }} I d H_{\text {lin }} M o d \Sigma$.
(ii') $\chi_{\text {lin }}^{E}[\Sigma]=\Sigma$.
(iii') $\operatorname{Mod} \Sigma=H_{\text {lin }} \operatorname{Mod} \Sigma$.
(iv') $\chi_{\text {lin }}^{A}[\operatorname{Mod} \Sigma]=\operatorname{Mod} \Sigma$.

From the general theory of conjugate pairs of additive closure operators for $K \subseteq A l g(\tau)$ and $\Sigma \subseteq\left(W_{\tau}^{l i n}(X)\right)^{2}$ one obtains also the following conditions:
(i) $\chi_{l i n}^{A}[K] \subseteq \operatorname{ModIdK} \Leftrightarrow \operatorname{ModId} K=H_{l i n} M o d H_{l i n} I d K \Leftrightarrow \chi_{l i n}^{A}[\operatorname{ModId} K]=$ ModIdK.
(ii) $\chi_{\text {lin }}^{E}[\Sigma] \subseteq \operatorname{IdMod} \Sigma \Leftrightarrow \operatorname{IdMod} \Sigma=H_{\text {lin }} I d H_{\text {lin }} \operatorname{Mod} \Sigma \Leftrightarrow \chi_{\text {lin }}^{E}[\operatorname{IdMod} \Sigma]=$ IdModइ.

The second proposition can be used if a variety $V=\operatorname{Mod} \Sigma$ is defined by a linear equational basis Σ. If we want to check, whether $I d V$ is a fixed point under the operator $\chi_{l i n}^{E}$, it is enough to apply all linear hypersubstitutions to the equational basis $\Sigma: \chi_{l i n}^{E}[I d V]=I d V \Leftrightarrow \chi_{l i n}^{E}[\Sigma] \subseteq I d V$ if $V=\operatorname{Mod} \Sigma$.

For any subset of equations and for any monoid \mathcal{M} of hypersubstitutions we defined a variety V to be M-solid, if V is a fixed point under the corresponding operator χ_{M}^{A}. Because of property (ii) we may define

Definition 2.14. A variety V of type τ is said to be linear-solid if it is linear and if the defining linear identities are linear hyperidentities.

Not every identity in a linear-solid variety V must be a linear hyperidentity. We consider the following example:

Example 2.15. Let $\tau=(2)$ and let $M=\operatorname{Mod}\left\{x_{1}\left(x_{2} x_{3}\right) \approx\left(x_{1} x_{2}\right) x_{3}, x_{1} x_{2} x_{3} x_{4} \approx\right.$ $\left.x_{1} x_{3} x_{2} x_{4}\right\}$ be the variety of medial semigroups. If we apply the four linear hypersubstitutions $\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{f\left(x_{2}, x_{1}\right)}$ to each of the both defining identities of variety M, we get identities satisfied in M. Therefore, M is linear-solid, but the equation $x_{1}^{2} x_{2} x_{3} x_{4} \approx x_{1}^{2} x_{3} x_{2} x_{4}$ is an identity in M, but not linear, therefore it cannot be a linear hyperidentity since $\mathcal{H} y p(\tau)$ as a monoid contains the identity hypersubstitution and thus each linear hyperidentity is a linear identity.

3. The Monoid of Linear Hypersubstitutions of Type $\tau_{n}^{|I|}$

In this section we consider monoids of linear hypersubstitutions when f_{i} is n ary, $n \geq 2$, for every $i \in I$, i.e. if the type contains $|I|$ operation symbols of the
same arity $n, n \geq 2$. Such types will be denoted by $\tau_{n}^{|I|}, n \geq 2$. We recall that projection hypersubstitutions map each operation symbol to a variable.

To determine all linear hypersubstitutions of this type, we describe the form of n-ary terms. We denote the number of occurences of operation symbols in a term t by $o p(t)$, i.e. $o p(t)$ is defined inductively by
(i) $o p(t)=0$ if $t=x_{i} \in X_{n}$ is a variable and
(ii) $o p\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right)=\sum_{j=1}^{n_{i}} o p\left(t_{j}\right)+1$ if $t=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ is a composed n-ary term.

Proposition 3.1. Let the an n-ary linear term of type $\tau_{n}^{|I|}, n \geq 2$. Then $o p(t) \leq 1$.
Proof. If $t=x_{i} \in X_{n}$, then $o p(t)=0$. Let $t=f_{i}\left(t_{1}, \ldots, t_{n}\right)$ be an n-ary linear term. If there were a number $k, 1 \leq k \leq n_{i}$ with $o p\left(t_{k}\right)=1$, then $\left|\operatorname{var}\left(t_{k}\right)\right| \geq 2$ since the arity of all operation symbols in t_{k} is greater than 1 and t_{k} is linear. Assume that $x_{m} \neq x_{l} \in \operatorname{var}\left(t_{k}\right)$. These variables cannot occur in another subterm of t . But in t there occur $n-1$ pairwise different variables which are different from x_{m} and x_{l}. This contradiction shows that $o p\left(t_{k}\right)=0$ for all $1 \leq k \leq n_{i}$ and thus $o p(t)=1$.

This observation allows us to describe the form of all n-ary linear terms and we obtain

$$
W_{\tau_{n}^{n \mid}}^{l i n}\left(X_{n}\right)=\left\{f_{i}\left(x_{s(1)}, \ldots, x_{s(n)}\right) \mid i \in I \text { and } s \text { is a permutation on }\{1, \ldots, n\}\right\} .
$$

Then it is also clear that there are precisely $|I| n!+n$ - many n-ary linear terms.
Since every linear hypersubstitution maps the operation symbol f_{i} to an n ary term we have a full description of $\operatorname{Hyp}^{l i n}\left(\tau_{n}^{|I|}\right)$. Any linear hypersubstitution maps the operation symbol f_{i} to a variable $x_{j} \in X_{n}$ or to a term of the form $f_{j}\left(x_{s(1)}, \ldots, x_{s(n)}\right)$ where s is a permutation on $\left\{1, \ldots, s_{n}\right\}$.

For the product of two linear hypersubstitutions σ_{1} and σ_{2} there are precisely the following three possibilities:

1. $\sigma_{2}\left(f_{i}\right)=x_{k} \in X_{n}$: Then

$$
\sigma_{1} \circ_{h} \sigma_{2}=\hat{\sigma}_{1}\left[\sigma_{2}\left(f_{i}\right)\right]=\hat{\sigma}_{1}\left[x_{k}\right]=x_{k}=\sigma_{x_{k}}\left(f_{i}\right) .
$$

2. $\sigma_{2}\left(f_{i}\right)=f_{j}\left(x_{s(1)}, \ldots, x_{s(n)}\right)$ and $\sigma_{1}\left(f_{j}\right)=x_{k}$. Then $\left(\sigma_{1} \circ_{h} \sigma_{2}\right)\left(f_{i}\right)=\hat{\sigma}_{1}\left[\sigma_{2}\left(f_{i}\right)\right]=\hat{\sigma}_{1}\left[f_{j}\left(x_{s(1)}, \ldots, x_{s(n)}\right)\right]=\sigma_{1}\left(f_{j}\right)\left(x_{s(1)}, \ldots, x_{s(n)}\right)$ $=x_{s(k)}=\sigma_{x_{s(k)}}\left(f_{i}\right)$.
3. $\sigma_{2}\left(f_{i}\right)=f_{j}\left(x_{s(1)}, \ldots, x_{s(n)}\right)$ and $\sigma_{1}\left(f_{j}\right)=f_{k}\left(x_{s^{\prime}(1)}, \ldots, x_{s^{\prime}(n)}\right)$. Then
$\left(\sigma_{1} \circ_{h} \sigma_{2}\right)\left(f_{i}\right)=\hat{\sigma}_{1}\left[\sigma_{2}\left(f_{i}\right)\right]=\hat{\sigma}_{1}\left[f_{j}\left(x_{s(1)}, \ldots, x_{s(n)}\right)\right]=\sigma_{1}\left(f_{j}\right)\left(x_{s(1)}, \ldots, x_{s(n)}\right)=$ $f_{k}\left(x_{s^{\prime}(1)}, \ldots, x_{s^{\prime}(n)}\right)\left(x_{s(1)}, \ldots, x_{s(n)}\right)=f_{k}\left(x_{\left(s o s^{\prime}\right)(1)}, \ldots, x_{\left(s o s^{\prime}\right)(n)}\right)$.

4. Interpretation of Linear Hypersubstitutions on Single Algebras

Term operations induced by linear terms are defined in the usual way. Let $\mathcal{A}=\left(A ;\left(f_{i}^{\mathcal{A}}\right)_{i \in I}\right)$ be an algebra of type τ and let $W_{\tau}^{\text {lin }}(X)$ be the set of all linear terms of type τ. Then the set $\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}}$ of all linear term operations of \mathcal{A} is defined as follows:
(i) $x_{i}^{\mathcal{A}}:=e_{i}^{n, \mathcal{A}}$,
(ii) if $f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right) \in W_{\tau}^{\text {lin }}(X)$ and assumed that $t_{1}^{\mathcal{A}}, \ldots, t_{n_{i}}^{\mathcal{A}}$ are defined, then

$$
\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right)^{\mathcal{A}}=f_{i}^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots, t_{n_{i}}^{\mathcal{A}}\right)
$$

Here the right-hand side is the superposition of $f_{i}^{\mathcal{A}}$ and $t_{1}^{\mathcal{A}}, \ldots, t_{n_{i}}^{\mathcal{A}}$.
Let \mathcal{A} be an algebra of type τ and let $W_{\tau}(X)$ be the set of all terms of type τ. Then the set $\left(W_{\tau}(X)\right)^{\mathcal{A}}$ of all term operations induced by terms of type τ is closed under some superposition operations. These operations can be defined on the set

Let $O(A):=\bigcup_{n \geq 1} O^{n}(A)$ be the set of all operations on A. Here $O^{n}(A)$ is the set of all n-ary operations defined on A. Then $\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}} \subset O(A)$. The set $O(A)$ is closed under some superposition operations which were introduced by A. I. Mal'cev (see [10]). Here we will use Mal'cev's original notation in spite of the fact that the letter τ was already used for the type of a language or an algebra.

Let $f \in O^{n}(A)$ and $g \in O^{m}(A)$. Then

$$
\begin{aligned}
&(f * g)\left(x_{1}, \ldots, x_{m+n-1}\right):: f\left(g\left(x_{1}, \ldots, x_{l i n}\right), x_{m+1}, \ldots, x_{m+n-1}\right), \\
&(\tau f)\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{2}, x_{1}, x_{3}, \ldots, x_{n}\right), \\
&(\zeta f)\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right), \\
&(\Delta f)\left(x_{1}, \ldots, x_{n-1}\right):=f\left(x_{1}, x_{1}, \ldots, x_{n-1}\right), \\
&(\nabla f)\left(x_{1}, x_{2}, \ldots, x_{n+1}\right):=f\left(x_{2}, \ldots, x_{n+1}\right), \\
& \text { if } f \in O^{n}(A) \text { with } n>1 \text { and } \\
&(\tau f)\left(x_{1}\right)=(\zeta f)\left(x_{1}\right)=(\Delta f)\left(x_{1}\right)=(\nabla f)\left(x_{1}\right)=f\left(x_{1}\right)
\end{aligned}
$$

if f is a unary function.
The algebra $\left(\left(W_{\tau}(X)\right)^{\mathcal{A}} ; *, \zeta, \tau, \Delta, \nabla, e_{1}^{2, A}\right)$ is said to be the clone of term operations of the algebra \mathcal{A}.

Now we ask for the algebraic structure of $\left(\left(W_{\tau}^{l i n}(X)\right)^{\mathcal{A}}\right.$. The answer was given by Couceiro and Lehtonen in [4].
Theorem 4.1.([4]) Let \mathcal{A} be an algebra of type τ and let $\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}}$ be the set of all linear term operations induced on \mathcal{A}, i.e. term operations induced by linear terms on \mathcal{A}. Then $\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}}$ is closed under the operations $*, \zeta, \tau$ and ∇ and contains all projections.

Couceiro and Lehtonen proved in [4] also that the subalgebra $\left(\left(W_{\tau}^{\operatorname{lin}}(X)\right)^{\mathcal{A}} ; \zeta, \tau\right.$, $\nabla, *)$ of $\left(\left(W_{\tau}(X)\right)^{\mathcal{A}} ; \zeta, \tau, \nabla, *\right)$ is generated by the set $\left\{f_{i}^{\mathcal{A}} \mid i \in I\right\} \cup J_{A}$, where J_{A} is the set of all projections.
Theorem 4.2. Let \mathcal{A} be any algebra of type τ. If $\sigma \in \operatorname{Hyp}^{\text {lin }}(\tau)$ satisfies $\hat{\sigma}[I d \mathcal{A}] \subseteq I d \mathcal{A}$. Then

$$
\Phi:\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}} \rightarrow\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}} \text { defined by } t^{\mathcal{A}} \rightarrow(\hat{\sigma}[t])^{\mathcal{A}}
$$

is an endomorphism of $\left(\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}} ; *, \zeta, \tau, \nabla\right)$.
Proof. 1. Φ is well-defined: assume that $t_{1}^{\mathcal{A}}=t_{2}^{\mathcal{A}}, t_{1}, t_{2} \in\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}}$ There follows $t_{1} \approx t_{2} \in I d \mathcal{A} \cap\left(W_{\tau}^{\text {lin }}(X)\right)^{2}$ and then

$$
\hat{\sigma}\left[t_{1}\right] \approx \hat{\sigma}\left[t_{2}\right] \in \hat{\sigma}\left[I d \mathcal{A} \cap\left(W_{\tau}^{l i n}(X)\right)^{2}\right]=\hat{\sigma}\left[I d^{l i n} \mathcal{A}\right]
$$

This means $\left(\hat{\sigma}\left[t_{1}\right]\right)^{\mathcal{A}}=\left(\hat{\sigma}\left[t_{2}\right]\right)^{\mathcal{A}}$.
2. Now we show the compatibility of Φ with the operations ζ and τ. Let $t^{\mathcal{A}} \in$ $\left(W_{\tau}^{\text {lin }}(X)\right)^{\mathcal{A}}$, then $\zeta\left(t^{\mathcal{A}}\right)=\left(t\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)\right)^{\mathcal{A}}$ and

$$
\Phi\left(\zeta\left(t^{\mathcal{A}}\right)\right)=\left(\hat{\sigma}\left[t\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)\right]\right)^{\mathcal{A}}=\left(\hat{\sigma}[t]\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)\right)^{\mathcal{A}}
$$

On the other hand we have

$$
\Phi\left(t^{\mathcal{A}}\right)=(\hat{\sigma}[t])^{\mathcal{A}} \text { and } \zeta\left(\Phi\left(t^{\mathcal{A}}\right)\right)=\left(\hat{\sigma}[t]\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)\right)^{\mathcal{A}}
$$

This shows $\Phi\left(\zeta\left(t^{\mathcal{A}}\right)\right)=\zeta\left(\Phi\left(t^{\mathcal{A}}\right)\right)$. In the same way we obtain $\Phi\left(\tau\left(t^{\mathcal{A}}\right)\right)=\tau\left(\Phi\left(t^{\mathcal{A}}\right)\right)$. 3. $\nabla\left(t^{\mathcal{A}}\right)=\left(t\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)\right)^{\mathcal{A}}$ and

$$
\begin{aligned}
\Phi\left(\nabla\left(t^{\mathcal{A}}\right)\right) & =\left(\hat{\sigma}\left[t\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)\right]\right)^{\mathcal{A}} \\
& =\left(\hat{\sigma}[t]\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)\right)^{\mathcal{A}} \\
& =\nabla\left(\Phi\left(t^{\mathcal{A}}\right)\right) .
\end{aligned}
$$

4. For the binary operation $*$ we get

$$
\begin{aligned}
\Phi\left(t^{\mathcal{A}} * s^{\mathcal{A}}\right) & \left.=\Phi\left(t\left(s, x_{m+1}, \ldots, x_{m+n-1}\right)^{\mathcal{A}}\right)\right) \\
& \left.\left.=\left(\hat{\sigma}\left[t\left(s, x_{m+1}, \ldots, x_{m+n-1}\right)\right]\right)^{\mathcal{A}}\right)\right) \\
& =\left(\hat{\sigma}[t]\left(\hat{\sigma}[s], x_{m+1}, \ldots, x_{m+n-1}\right)\right)^{\mathcal{A}} \\
& =(\hat{\sigma}[t])^{\mathcal{A}} *(\hat{\sigma}[s])^{\mathcal{A}} \\
& =\Phi\left(t^{\mathcal{A}}\right) * \Phi\left(s^{\mathcal{A}}\right) .
\end{aligned}
$$

```
    Because of \(e_{2}^{2, \mathcal{A}}=\tau\left(e_{1}^{2, \mathcal{A}}\right)\) and
\((\nabla f)\left(x_{1}, \ldots, x_{n+1}\right)\)
    \(=\left(f * e_{2}^{2, \mathcal{A}}\right)\left(x_{1}, \ldots, x_{n+t}\right)\)
    \(=f\left(e_{2}^{2, \mathcal{A}}\left(x_{1}, x_{2}\right), x_{3}, \ldots, x_{n+1}\right) \quad(\nabla f)=f * e_{2}^{2, \mathcal{A}}=f * \tau\left(e_{1}^{2, \mathcal{A}}\right)\), the algebra
    \(=f\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)\), i.e.
```

$\left(\left(W_{\tau}^{l i n}\right)^{\mathcal{A}} ; *, \zeta, \tau, \nabla\right)$ is rationally equivalent to $\left(\left(W_{\tau}^{\text {lin }}\right)^{\mathcal{A}} ; *, \zeta, \tau, e_{2}^{2, \mathcal{A}}\right)$ and the following the-
orem holds also for this algebra.

References

[1] M. N. Bleicher, H. Schneider, R. L. Wilson, Permanence of identities on algebras, Algebra Universalis, 3(1973), 72-93.
[2] P. Burmeister, A model theoretic oriented approach to partial algebras. Introduction to theory and application of partial algebras Part I, Mathematical Research 32, Akademie-Verlag, Berlin, 1986.
[3] I. Chajda, G. Czédli, R. Halaš, Tolerances as images of congruences in varieties defined by linear identities, Algebra Universalis, 69(2013), 167-169.
[4] M. Couceiro, E. Lehtonen, Galois theory for sets of operations closed under permutation, cylindrification and composition, Algebra Universalis, 67(2012), 273-297.
[5] K. Denecke, S. L. Wismath, Hyperidentities and clones, Gordon and Breach Science Publishers, Amsterdam, 2000.
[6] S. L. Wismath, The monoid of hypersubstitutions of type (n), Southeast Asian Bull. Math., 24(1)(2000), 115-128.
[7] F. Gécseg, M. Steinby, Tree automata, Akadémiai Kiadó, Budapest, 1984.
[8] J. Koppitz, K. Denecke, M-solid Varieties of algebras, Advances in Mathematics 10, Springer, New York, 2006.
[9] A. Pilitowska, Linear identities in graph algebras, Comment. Math Univ. Carolin., 50(2009), 11-24.
[10] A. I. Mal'cev, Iterative Algebras and Post's Varieties, Algebra Logic, 5(2)(1966), 5-24.
[11] M. Reichel, Bihomomorphisms and hyperidentities, Dissertation, Universität Potsdam, 1994.

